题目大意:n个点构成一个环,相邻两点之间有一条边,每次随机选出两个点,l,r,从l走到r,(若l==r则绕环一整圈),问期望多少次走完所有的边。(n<=10)
(保留10位小数,不四舍五入,得分是与标答相等的位数)
思路:
数据范围感人啊,骗分的话直接随机跑个几十亿次,这样几乎能保证每个点3-4分,但是既然数据都这么小了,为什么不记忆化状态压缩搜索呢?
我们设f[i]为从i状态走完所有边的期望步数,f[(1<<n)-1] = 0,然后对于每一个状态,我们枚举所有l,r的组合对于该状态的影响,即会变成什么状态,对于每一个状态解一个方程就行了,设t(s,i)为状态s在i转移下变成的状态。
其中t为不同于s的状态。
F[0]就是答案,比较坑的是不四舍五入,那么我们就先打一张取到11位的表,再把第11位去掉就行了。(捂脸..)。
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <ctime>
using namespace std;
int n,tot = 0,num[100010];
double f[100010];
double dfs(int x) {
if(x == (1 << n) -1 ) { f[x] = 0;return f[x];}
double K = 1,D = 0;
for(int i = 1;i <= tot;i ++) {
if((x | num[i]) == x) K -= double(1) / tot;
else {
if(f[x | num[i]] == 0)
f[x | num[i]] = dfs(x | num[i]);
D += (double(1) / tot) * f[x | num[i]];
}
}
return (D + double(1)) / K;
}
int main() {
for(int w = 1;w <= 10;w ++) {
n = w;tot = 0;
memset(f,0,sizeof(f));
memset(num,0,sizeof(num));
for(int i = 1;i <= n;i ++) {
for(int j = 1;j <= n;j ++) {
int l = i,r = j;
tot ++ ;
if(l < r) {
for(int k = l;k <= r - 1;k ++) {
num[tot] += 1 << (k - 1);
}
}
if(l >= r) {
for(int k = 1;k <= r - 1;k ++) {
num[tot] += 1 << (k - 1);
}
for(int k = l;k <= n;k ++) {
num[tot] += 1 << (k - 1);
}
}
}
}
printf("%0.11f\n",dfs(0));
}
}