bzoj3572_hnoi2014 世界树

题目大意:给出一棵树,每次询问给出k[i]个点,如果点x离k[i]个点中的点j最近,那么称x被j管理,对于每次询问,给出k[i]个点每个点管理的点的数量(包括自己)。

保证所有询问k[i]之和不超过300000,n<=300000.

       首先对于所有询问的点构建一棵虚树(废话)..

       (其实虚树的特征看询问方式和数据范围的特点一般就能看出)。

       那么现在问题在于如何统计答案,我们先处理出对于每个虚树当中的点i,支配它的关键点是哪个(关键点指询问中给出的那些点),这个可以用儿子或者父亲节点来更新自己,这不是一次dfs能处理的,那就两次嘛。(设支配点i的关键点为belong[i])

       然后,对于我们再遍历一遍虚树,统计答案如下:

       若当前点x为虚树的根,那么Ans[belong[x]]+=size[1]-size[x],为什么呢?因为x之上的所有点都只能先走到x,再走到其他点,那么 belong[x]显然是对于那些点来说的最优点。

       若不是虚树的根(设Anc为当前点x在虚树中的父亲):

       如果belong[Anc]=belong[x],那么belong[x]对于这条路径上的所有点以及这条路径所衍生的所有子树都是最优解。

       否则我们找到中间的一个断点c,使得c及以下的点离belong[x]更近,c以上的点离belong[Anc]更近,累加答案即可

然而还没完,同之前根的情况,可能当前点x衍生出去的某些子树不在虚树中,但是必须累加到答案里,所以就直接把他们累加到Ans[belong[x]]中就可以了。

#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <ctime>
#define inf 1e9
using namespace std;
struct node{int to;int next;int len;
};node edge[1000010],bian[1000010];
int All = 0,tot = 0,fir[300010],first[300010],size[3000010];
int in[300010],out[300010],f[300010][21],Ans[300010],k,len,top;
int stack[300010],list[600010],que[300010],tim,dep[300010];
int belong[300010],n,m,a,b,dis[300010],root;
bool mark[300010];
bool comp(const int &x,const int &y) {return in[x] < in[y];}
bool check(int x,int y) {
	return in[x] < in[y] && out[x] > out[y];
}
void add(int x,int y) {
	All ++;
	edge[All].to = y;
	edge[All].next = fir[x];
	fir[x] = All;
}
void inser(int x,int y,int z) {
	tot ++;
	bian[tot].to = y;
	bian[tot].next = first[x];
	bian[tot].len = z;
	first[x] = tot;
}
void dfs(int x,int Anc,int depth) {
	in[x] = ++ tim;
	dep[x] = depth;
	f[x][0] = Anc;
	size[x] = 1;
	for(int i = 1;i <= 20;i ++)
		f[x][i] = f[f[x][i - 1]][i - 1];
	for(int u = fir[x];u;u = edge[u].next)
		if(dep[edge[u].to] == 0)
			dfs(edge[u].to,x,depth + 1),size[x] += size[edge[u].to];
	out[x] = ++ tim;
}
int lca(int x,int y) {
	if(dep[x] < dep[y]) swap(x,y);
	for(int i = 20;i >= 0;i --)
		if(dep[f[x][i]] >= dep[y])
			x = f[x][i];
	if(x == y) return x;
	for(int i = 20;i >= 0;i --)
		if(f[x][i] != f[y][i])
			x = f[x][i],y = f[y][i];
	return f[x][0];
}
void work1(int x) {
	for(int u = first[x];u;u = bian[u].next)
		work1(bian[u].to);
	if(mark[x]) belong[x] = x,dis[x] = 0;
	else 
	{
		int ret = inf,pos = inf;
		for(int u = first[x];u;u = bian[u].next)
		{
			if(dis[bian[u].to] + bian[u].len < ret)
			{
				ret = dis[bian[u].to] + bian[u].len;
				pos = belong[bian[u].to];
			}
			else if(dis[bian[u].to] + bian[u].len == ret && belong[bian[u].to] < pos)
				pos = belong[bian[u].to];
		}
		belong[x] = pos;
		dis[x] = ret;
	}
}
void work2(int x,int pre,int Anc) {
	if(x != root)
	{
		if(dis[Anc] + pre < dis[x])
		{
			belong[x] = belong[Anc];
			dis[x] = dis[Anc] + pre;
		}
		else if(dis[Anc] + pre == dis[x] && belong[Anc] < belong[x])
			belong[x] = belong[Anc];
	}
	for(int u = first[x];u;u = bian[u].next)
		work2(bian[u].to,bian[u].len,x);
}
int Ask(int x,int y) {
	for(int i = 20;i >= 0;i --)
		if(dep[f[x][i]] > dep[y])
			x = f[x][i];
	return x;
}
void getans(int x,int Anc) {
	if(x == root) Ans[belong[x]] += size[1] - size[x];
	else 
	{
		int father = Ask(x,Anc);
		if(belong[x] == belong[Anc])
			Ans[belong[x]] += size[father] - size[x];
		else 
		{
			int Now = x,ret = 0;
			for(int i = 20;i >= 0;i --)
			{
				if(dep[f[Now][i]] >= dep[father])
				{
					if(dis[x] + (1 << i) + ret < dis[Anc] + dep[x] - dep[Anc] - (1 << i) - ret)
					{
						Now = f[Now][i],ret += (1 << i);
					}
					else if(dis[x] + (1 << i) + ret == dis[Anc] + dep[x] - dep[Anc] - (1 << i) - ret)
						if(belong[x] < belong[Anc])
							Now = f[Now][i],ret += (1 << i);
				}
			}
			Ans[belong[Anc]] += size[father] - size[Now];
			Ans[belong[x]] += size[Now] - size[x];
		}
	}
	int w = size[x];
	for(int u = first[x];u;u = bian[u].next)
	{
		w -= size[Ask(bian[u].to,x)];
		getans(bian[u].to,x);
	}
	Ans[belong[x]] += w;
}
int main() {
	scanf("%d",&n);
	for(int i = 1;i <= n - 1;i ++)
	{
		scanf("%d%d",&a,&b);
		add(a,b);
		add(b,a);
	}
	dfs(1,0,1);
	scanf("%d",&m);
	for(int i = 0;i <= 300000;i ++) belong[i] = dis[i] = inf;
	while(m --) 
	{
		scanf("%d",&k);len = k;top = 0;
		for(int i = 1;i <= k;i ++) scanf("%d",&list[i]);
		for(int i = 1;i <= k;i ++) que[i] = list[i];
		sort(list + 1,list + len + 1,comp);
		for(int i = 2;i <= k;i ++)
			list[ ++ len] = lca(list[i],list[i - 1]);
		sort(list + 1,list + len + 1,comp);
		len = unique(list + 1,list + len + 1) - list - 1;
		for(int i = 1;i <= len;i ++)
		{
			while(top > 0 && ! check(stack[top],list[i]))
				 top --;
			if(stack[top] == 0) root = list[i];
			else inser(stack[top],list[i],dep[list[i]] - dep[stack[top]]);
			stack[ ++ top] = list[i];
		}
		for(int i = 1;i <= k;i ++) mark[que[i]] = true;
		work1(root);
		work2(root,0,0);
		getans(root,0);
		for(int i = 1;i <= k;i ++) printf("%d ",Ans[que[i]]);
		tot = 0;printf("\n");
		for(int i = 1;i <= k;i ++) mark[que[i]] = false;
		for(int i = 1;i <= len;i ++) first[list[i]] = 0;
		for(int i = 1;i <= len;i ++) dis[list[i]] = inf;
		for(int i = 1;i <= len;i ++) belong[list[i]] = inf;
		for(int i = 1;i <= len;i ++) Ans[list[i]] = 0;
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值