单片机小白学步系列(四) 模拟电路、传统数字电路与单片机

本文介绍了单片机小白如何从模拟电路和数字电路入门,探讨了通过电路进行数学计算的原理,强调了数字电路的精确性优势。单片机与传统数字电路的对比展示了单片机在设计上的灵活性和便利性,揭示了单片机作为数字电路核心的优越性。
摘要由CSDN通过智能技术生成

  大家都用过计算器,有没有想过它是怎么实现的呢?这里我不详述计算器的原理,而只对思路进行简单介绍。等我们学会了单片机,也可以亲手制作一个计算器。通过电路进行数学计算,应该怎么做呢?为了便于理解,下面我举个很简单的例子。

  


  在这个电路中,电阻R1=R2,我给A、B两点分别接入3V和5V电压,这个时候,C点的电压则为(5+3)/2=4V。这个电路完成了一个求平均值的操作,如果我们用1V表示数字1,它计算出来3和5的平均值是4;如果我们定义1mV表示数字1,这个电路就计算出了3000和5000的平均值是4000。如果我能通过巧妙的方法,利用电阻电容乃至晶体管等元器件的特性,设计出很多类似这样的电路,它就可以完成很复杂的四则运算,以及平方、开方、对数等运算。这就是通过电路来帮助我们进行数学计算的简单例子。在这个例子中,并不见得能体现到电路计算相比于我们用笔纸计算的优势。但是如果我们把电路做的足够复杂,它的计算速度是相当快的,并且只要有电能供应,它就永远不知疲倦的计算,而且不容易出错。

  上面我们设计了一个简单的模拟电路计算器,它能计算两个数的平均值,我们用电压值直接表示数字。但是这个电路在实际中工作并没有那么理想。做基本电学实验测量电压的时候,大家会发现,电压的测量总是有误差的,电压表有误差,读数也有误差,并且基本上无法避免。自然界中很多东西都是有误差的。在这里除了电压表测出来的值和实际值不同,实际C点电压值也并不完全等于AB电压值的平均,因为我们很难保证R1和R2阻值完全一致,并且导线也有电阻。于是我们计算出来的结果,更可能是3.99或者4.01而不是精确的4.00,这就导致我们的计算出了误差。如果电路复杂了,误差会逐步累积,越来越大,最后导致计算结果完全没有意义,而减小电路的误差也是相当不容易的。

  于是数字电路诞生了。相较于模拟电路的不精确,数字电路就有很大优势了。注意,数字电路是相对于模拟电路而言的,数字电路的本质也是模拟电路。通常我们所说的模拟电路,指的是除数字电路以外的电路。

  我们人类用十进制计数法表示数字,原因是我们有十个手指。而数字电路中使用二进制数字来进行运算,因为很多电子器件往往会有两种很确定的状态,比如开关的“开”和“关”,灯的“亮”和“灭”。二进制数其实比十进制数简单多了。十进制中,从0到9,满10就向高位进位,即9+1=10;而二进制满二进一,所以二进制中1+1=10。一开始我们会感觉这样很别扭,实际上并非二进制有多难,只是我们习惯了十进制而已。

  数字电路中,我们使用的比较多的一种用电压表示二进制数字的方式,称为TTL电平(TTL = Transistor-Transistor Logic,原意为逻辑门电路)。它规定+5V电压为高电平,表示数字“1”,0V电压为低电平,表示数字“0”。由于电路自身特点,实际上这种TTL电平电路输出的电压,并非绝对准确的5V和0V,而是规定将>2.4V的电压视为高电平, 电压<0.4V则视为低电平。也正是因为这样的特点,我们根本不需要将电压控制的很准确,就能很准确的表示出我们想要表示的数字。和前面的模拟平均数计算电路相比,明显很有优势。而这也正是数字电路得以广泛应用的根本原因。

  数字电路的介绍就到此为止,在原理篇中会有更详细的介绍。事实上,单片机的本质也是数字电路。下面我们要说的传统数字电路,指的是除单片机这类可编程器件以外的数字电路。下面我们来看看单片机和传统数字电路的区别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值