keras 学习率设置

转载自https://blog.csdn.net/zzc15806/article/details/79711114

Keras提供两种学习率适应方法,可通过回调函数实现。
1. LearningRateScheduler

keras.callbacks.LearningRateScheduler(schedule)

该回调函数是学习率调度器.
参数

    schedule:函数,该函数以epoch号为参数(从0算起的整数),返回一个新学习率(浮点数)

代码

   

import keras.backend as K
    from keras.callbacks import LearningRateScheduler
     
    def scheduler(epoch):
        # 每隔100个epoch,学习率减小为原来的1/10
        if epoch % 100 == 0 and epoch != 0:
            lr = K.get_value(model.optimizer.lr)
            K.set_value(model.optimizer.lr, lr * 0.1)
            print("lr changed to {}".format(lr * 0.1))
        return K.get_value(model.optimizer.lr)
     
    reduce_lr = LearningRateScheduler(scheduler)
    model.fit(train_x, train_y, batch_size=32, epochs=5, callbacks=[reduce_lr])

2. ReduceLROnPlateau

keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)

当评价指标不在提升时,减少学习率

当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率
参数

    monitor:被监测的量
    factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
    patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
    mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
    epsilon:阈值,用来确定是否进入检测值的“平原区”
    cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
    min_lr:学习率的下限

 代码

    from keras.callbacks import ReduceLROnPlateau
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')
    model.fit(train_x, train_y, batch_size=32, epochs=5, validation_split=0.1, callbacks=[reduce_lr])


---------------------
作者:z小白
来源:CSDN
原文:https://blog.csdn.net/zzc15806/article/details/79711114
版权声明:本文为博主原创文章,转载请附上博文链接!

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值