python实现normal equation进行一元、多元线性回归

python实现normal equation进行一元、多元线性回归

一元线性回归

数据

1734701-20200316210200891-1667601696.png

代码

import numpy as np
import matplotlib.pyplot as plt 
import matplotlib
# 导入数据
def loadDataSet(filename):
    x=[[],[]]
    y=[]
    with open(filename,'r') as f:
        for line in f.readlines():
            lineDataList=line.split('\t')
            lineDataList=[float(x) for x in lineDataList]
            x[0].append(lineDataList[0])
            x[1].append(lineDataList[1])
            y.append(lineDataList[2])
    return x,y 

# 转化为矩阵
def mat(x):
    return np.matrix(np.array(x)).T

# 可视化
def dataVisual(xmat,ymat,k):
    k1,k2=k[0],k[1]
    matplotlib.rcParams['font.sans-serif'] = ['SimHei']
    plt.title('拟合可视化')
    plt.scatter(xmat[:,1].flatten().A[0],ymat[:,0].flatten().A[0])
    x = np.linspace(0, 1, 50)
    y=x*k2+k1
    plt.plot(x,y,c='r')
    plt.show()

   

# 求解回归的参数
def normalEquation(xmat,ymat):
    temp=xmat.T.dot(xmat)
    isInverse=np.linalg.det(xmat.T.dot(xmat))
    if isInverse==0.0:
        print('不可逆矩阵')
    else:
        inv=temp.I
        return inv.dot(xmat.T).dot(ymat)
    

# 主函数
def main():
    xAll,y=loadDataSet('linearRegression/ex0.txt')
    xmat=mat(xAll)
    ymat=mat(y)
    res=normalEquation(xmat,ymat)
    print(res)
    k1,k2=res[0,0],res[1,0]
    dataVisual(xmat,ymat,[k1,k2])

 

if __name__ == "__main__":
    main()

结果

1734701-20200316210521763-1703486555.png

多元线性回归

数据

1734701-20200316210554028-1653736628.png

代码

import numpy as np 
import matplotlib.pyplot as plt 
import re
from sklearn.linear_model import SGDRegressor


# 将数据转化成为矩阵
def matrix(x):
    return np.matrix(np.array(x)).T

# 加载数据
def loadData(fileName):
    x=[]
    y=[]
    regex = re.compile('\s+')
    with open(fileName,'r') as f:
        readlines=f.readlines()
        for line in readlines:
            dataLine=regex.split(line)
            dataList=[float(x) for x in dataLine[0:-1]]
            xList=dataList[0:8]
            x.append(xList)
            y.append(dataList[-1])
    return x,y


# 求解回归的参数
def normalEquation(xmat,ymat):
    temp=xmat.T.dot(xmat)
    isInverse=np.linalg.det(xmat.T.dot(xmat))
    if isInverse==0.0:
        print('不可逆矩阵')
        return None
    else:
        inv=temp.I
        return inv.dot(xmat.T).dot(ymat)


# 梯度下降求参数
def gradientDecent(xmat,ymat):
    sgd=SGDRegressor()
    sgd.fit(xmat,ymat)
    return sgd.coef_

    
# 运行程序
def main():
    x,y=loadData('linearRegression/abalone1.txt')
    xmat=matrix(x).T
    ymat=matrix(y)
    # 通过equation来计算模型的参数
    theta=normalEquation(xmat,ymat)
    print('通过equation来计算模型的参数')
    print(theta)
    # 掉包sklearn的梯度下降的算法求参数
    print('掉包sklearn的梯度下降的算法求参数')
    gtheta=gradientDecent(x,y)
    print(gtheta)



if __name__ == "__main__":
    main()

结果

1734701-20200316210658817-1732915554.png

目录结构

1734701-20200316210721593-283073985.png

数据下载

链接:https://pan.baidu.com/s/1JXrE4kbYsdVSSWjTUSDT3g
提取码:obxh
链接:https://pan.baidu.com/s/13wXq52wpKHbIlf3v21Qcgg
提取码:w4m5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值