机器学习中异常值检测方法 一、前置条件 知识领域 要求 编程基础 Python基础(变量、循环、函数)、Jupyter Notebook或PyCharm使用。 统计学基础 理解均值、中位数、标准差、四分位数、正态分布、Z-score等概念。 机器学习基础 熟悉监督/无监督学习、分类、聚类、回归等基本概念。 数据预处理 数据清洗、特征缩放(标准化/归一化)、数据可视化(Matplotlib/Seaborn)。 二、渐进式学习计划 阶段 学习目标 核心内容 时间分配 难度评分(1-5) 1. 异常值基础 理解异常