自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(151)
  • 资源 (2)
  • 收藏
  • 关注

原创 20250914-03: Langchain概念:提示模板+少样本提示

方面单轮对话示例多轮对话示例形式简单的Q-A 对(一问一答)完整的对话历史(多问多答)内容只展示正确的最终答案展示错误 -> 反馈 -> 纠正的全过程好比闪卡/备忘录:只记答案教学视频/案例研究:分析错题,讲解思路教学目标教会模型“是什么教会模型“为什么”以及“如何改进复杂度低高适用任务事实问答、翻译、简单总结风格写作、复杂推理、安全拒绝、交互式任务如果你想让模型学会回答简单明了的问题,就用单轮示例。像喂给它一对对的(问题,答案)。如果你想教模型完成一件复杂的、容易出错的事情,就给它讲个。

2025-09-14 21:34:56 1016

原创 系统性掌握 LangChain 的核心概念体系

本文提出了一套为期4周的系统性学习计划,旨在帮助开发者掌握LangChain框架的核心概念体系。学习路径分为6个模块:核心运行机制、模型与输入输出、记忆与上下文管理、知识增强(RAG)、决策与行动(Agent)以及工程化与质量保障。每个模块都包含明确的学习目标、核心概念和渐进式实践任务,通过从基础组件到完整系统的递进训练,最终实现构建具备记忆、检索、工具调用和评估能力的AI应用。该计划强调刻意练习和成果导向,每周聚焦1-2个模块,最终产出包括带记忆的聊天机器人、PDF问答系统和智能代理等实践项目。

2025-09-14 15:31:32 671

原创 20250914-02: Langchain概念:异步编程(Async)

本文将介绍LangChain中的异步编程概念。异步编程通过非阻塞方式处理I/O密集型任务(如API调用、数据库访问),可显著提升效率。LangChain为同步方法提供异步版本(前缀为"a"),如ainvoke对应invoke。当异步实现不可用时,LangChain会委托给同步方法,虽带来轻微性能开销但保证兼容性。文章还通过"厨房"比喻形象解释同步与异步的区别,以及性能开销的来源,包括委托同步方法和处理小任务时的额外成本。

2025-09-14 15:18:48 561

原创 20250914-01: Langchain概念:流式传输(Streaming)

从大型语言模型(LLM)生成完整响应通常会产生几秒钟的延迟,在涉及多次模型调用的复杂应用程序中,这种延迟会更加明显。这种延迟会更加明显。幸运的是,大型语言模型以迭代方式生成响应,允许在生成过程中显示中间结果。通过流式传输这些中间输出,LangChain 可以在基于大型语言模型的应用程序中实现更流畅的用户体验,并在其核心设计中提供了对流式传输的内置支持。‍在本指南中,我们将讨论大型语言模型应用程序中的流式传输,并探讨 LangChain 的流式传输 API 如何促进应用程序中各种组件的实时输出。

2025-09-14 14:25:41 706

原创 20250913-04: Langchain概念:LangSmith 追踪(Tracing)

本文介绍了LangChain中的追踪(Tracing)功能及其在LangSmith平台上的实现。追踪是记录应用程序从输入到输出执行步骤的过程,对调试和诊断复杂问题至关重要。文章详细说明了如何配置LangSmith追踪功能,包括安装依赖项、设置API密钥、环境变量,以及通过代码示例展示如何追踪OpenAI调用和整个应用程序的执行流程。此外,还介绍了LangSmith平台的高级功能,如监控、自动化、收集反馈以及追踪RAG应用等,帮助开发者更好地观测和优化LLM应用程序的性能。

2025-09-14 01:04:13 772

原创 20250913-03: Langchain概念:回调

本文介绍了LangChain框架中的回调系统,该系统允许开发者在LLM应用程序执行的不同阶段注入自定义逻辑,用于日志记录、监控等任务。回调处理程序分为同步和异步两种类型,通过事件触发对应方法(如on_llm_start)。回调可通过请求时或构造函数两种方式传递,但需注意构造函数回调不会被子对象继承。此外,在Python<=3.10中异步运行时需手动传播回调到子对象,否则可能导致事件未被捕获。

2025-09-14 00:11:21 344

原创 20250913-02: Langchain概念:表达式语言(LCEL)

咖啡师(在这里相当于 LangChain)会根据你的要求,自行决定最佳的步骤、水温、水流等来优化制作过程。是一个组合原语,它允许您并发运行多个 runnable,并为每个 runnable 提供相同的输入。请记住,runnable 是并行执行的,因此虽然结果与上面所示的字典推导式相同,但执行时间要快得多。许多这些传统链隐藏了诸如提示之类的关键细节,并且随着各种可行模型的出现,自定义变得越来越重要。的用法非常常见,因此我们创建了它们的简写语法。——它允许 LangChain 以优化的方式处理链的运行时执行。

2025-09-13 23:22:04 1542

原创 20250913-01: Langchain概念:Runnable可运行接口

Runnable 方式定义了一个标准接口,允许 Runnable 组件调用invoked:将单个输入转换为输出。批量处理Batched:将多个输入高效地转换为输出。流式传输Streamed:输出在其生成时进行流式传输。检查 Inspected:可以访问有关 Runnable 输入、输出和配置的示意信息。组合 Composed:可以使用LangChain 表达式语言 (LCEL)将多个 Runnable 组合在一起以创建复杂的管道。请查看LCEL 速查表。

2025-09-13 20:51:20 978

原创 20250911-01: 概念:基础认知--消息

用于​设定AI行为​或​对话上下文​的​系统指令消息​,LangChain会根据提供商能力自动适配传递方式。🔹 HumanMessage:代表用户输入的消息,支持文本或自动转换字符串,是对话的触发起点。模型生成的响应消息,可包含文本、tool_calls或多媒体内容,是对话的核心输出。携带工具执行结果的消息,必须包含tool_call_id以关联原始调用,是工具调用闭环的关键。流式响应中的消息片段,支持运算符聚合为完整AIMessage,用于实时输出场景。‍消息是对话的。

2025-09-11 23:47:36 636 1

原创 20250909-01: 概念:基础认知--聊天模型

LLM:大型语言模型(LLM)是先进的机器学习模型,擅长文本生成、翻译、摘要、问答等广泛的语言相关任务,无需针对每个场景进行任务特定的微调。现代 LLM :通常通过聊天模型接口访问,该接口接受消息列表作为输入,并返回一条消息作为输出。工具调用:聊天模型自带工具调用,可直接连外部服务、API 和数据库,顺便把非结构化数据秒变结构化。结构化输出:一种使聊天模型以结构化格式响应的技术。(例如与给定模式匹配的 JSON)多模态:处理文本以外数据(例如图像、音频和视频)的能力。

2025-09-10 01:08:53 712

原创 20250908-02:运行第一个 LLM 调用程序

本文介绍了如何使用LangChain框架快速构建一个简单的LLM调用程序。主要内容包括:设置LangChain开发环境;使用提示模板和智谱GLM模型构建基础应用;对比.invoke()和.stream()的调用方式差异;通过LangSmith进行调试追踪。教程提供了代码模板和GitCode源码链接,帮助开发者在1小时内完成首个LLM应用,实现文本翻译功能并提交到代码仓库。关键学习点包括语言模型调用、提示模板使用和输出解析器配置。

2025-09-08 23:51:29 909

原创 20250908-02:搭建 Python 开发环境

本文介绍了搭建Python开发环境的核心步骤,重点围绕Conda和UV工具的使用展开。主要内容包括:1)Conda的功能介绍与环境管理(创建/切换虚拟环境、包安装);2)UV工具的高效特性(比pip快10-100倍)及其核心功能(项目管理、依赖同步);3)国内镜像源配置(清华源);4)关键操作指令清单(环境创建、包管理、项目初始化等)。文章提供了完整的开发环境搭建方案,强调通过虚拟环境实现项目隔离,并附有工具速查表链接,适合需要快速配置Python开发环境的读者参考。

2025-09-08 20:19:40 860

原创 20250907-03:LangChain的六大核心模块概览

‍✅ LangChain 第一周成长计划:基础认知与环境搭建🎯 本周核心目标(Objective)建立对 LangChain 的系统性认知,完成本地开发环境搭建,并成功运行第一个 LLM 调用程序。‍‍具体内容:所需时间:2 小时预期成果:难度控制:i+1 —— 不要求深入代码,只需建立模块“是什么、干什么”的认知地图。资源准备:‍​关键内容(即六大核心模块):‍LangChain 为以下主要组件提供标准、可扩展的接口和外部集成​格式化和管理语言模型输入输出。 “执行者” :负责与底层大语言模型(LLM

2025-09-07 23:54:27 609

原创 20250907-02:LangChain 架构和LangChain 生态系统包是什么

核心层:定规矩,保兼容,让所有积木能拼在一起。集成层:接外设,通天下,让 AI 能用上各种工具和数据。应用层:搭积木,建应用,用预制件快速组装智能功能。编排部署层:上生产,可运维,让原型变成稳定可靠的服务。

2025-09-07 20:34:31 1140

原创 20250907-0101:LangChain 核心价值补充

LangChain 是一个专为“连接大模型与现实世界、编排复杂任务流程”而设计的开发框架,它让开发者能高效、可靠、可扩展地构建生产级 LLM 应用。

2025-09-07 19:09:38 587

原创 20250907-01:理解 LangChain 是什么 & 为什么诞生

LangChain 并不是一个“银弹”,但它提供了一套标准化、模块化、生产就绪的工具箱,将 AI 应用开发中那些重复、繁琐、易错的“脏活累活”抽象出来,让开发者能够专注于业务逻辑和创新,而不是底层的集成细节。‍。

2025-09-07 18:15:41 985

原创 20250906-01:开始创建LangChain的第一个项目

配置JetBrain环境 使用 conda创建的。通过JetBrain Git工具下载【简单】通过Git终端下载【简单】许安装git工具。配置JetBrain Idea uv解释器。工具作为管理和python解析器。配置project.toml文件。执行‘hello world'配置本地JetBrain环境。使用conda 新建一个。参考之前项目配置【已验证】使用jetbrain打开。作为python基础。

2025-09-06 22:48:09 1043

原创 【LangChain:01】✅ 3小时掌握 LangChain 表达式语言 (LCEL) 成长计划 —— 刻意练习版

这篇3小时掌握LangChain表达式语言(LCEL)的刻意练习计划,通过三个阶段系统化学习路径:0.5小时理论学习(理解LCEL设计哲学与核心组件)、1.5小时基础练习(构建顺序链/并行分支/状态管理)和1小时综合应用(RAG链构建与调试部署)。计划强调即时反馈,每项任务都设定了可验证的成果标准,并配套官方文档、视频教程和在线练习平台等资源。完成训练后,学习者将掌握LCEL的核心优势、链式构建能力及生产环境部署技巧,实现从理论到实践的快速跨越。(149字)

2025-09-06 01:26:47 475

原创 OKR目标管理

OKR目标管理是一种通过设定定性目标(O)和量化关键结果(KR)的方法。O需符合SMART原则,明确方向且鼓舞人心;KR需3-5条可衡量结果,完成度0-100%。模板化工具可帮助制定具体计划,如:"在时限内通过行动完成可验证成果,最多重试N次,最终达标并留证"。该方法适用于个人和业务目标管理,强调结果导向和可验证性。

2025-09-06 01:23:20 303

原创 《LangChain从入门到精通》系统学习教材大纲

LangChain的诞生背景:为什么需要LangChain?核心定位:连接大模型与外部世界的“操作系统”典型应用场景:聊天机器人、文档问答、智能代理、自动化流程等LangChain是通往AI应用开发的黄金钥匙。它不仅是一个工具库,更是一种构建智能系统的思维方式。只要你坚持系统学习、动手实践,完全可以在3个月内从小白成长为专家。我会一直在这里支持你。接下来,你可以告诉我:“老师,我现在想从第一课开始,请帮我制定第1周的详细学习计划。期待你的成长!—— 你的LangChain导师 🌟。

2025-09-06 00:04:20 673

原创 刻意练习实践框架模板

2025-09-03 21:07:09 514

原创 刻意练习理论

刻意练习是指有目的、有反馈、专注于突破舒适区目标导向:分解为具体、可衡量的小目标专注投入:全神贯注于当前任务,排除干扰即时反馈:快速获取表现评估,识别不足挑战极限:持续尝试略高于当前能力的任务(最近发展区)

2025-09-03 21:04:04 721

原创 刻意练习实践说明使用手册

刻意练习实践框架包含五个阶段,对应四张核心卡片。建议按以下顺序使用:fill:#333;color:#333;color:#333;fill:none;目标设定卡调整计划反馈记录卡进度跟踪卡。

2025-09-03 20:59:07 601

原创 Langchain指南-关键特性:使用聊天模型调用工具

为了使模型能够调用工具,我们需要传递描述工具功能及其参数的工具模式。支持工具调用功能的聊天模型实现了一个.bind_tools()方法,用于将工具模式传递给模型。工具模式可以作为 Python 函数(带有类型提示和文档字符串)、Pydantic 模型、TypedDict 类或 LangChain 工具对象传递。后续对模型的调用将传递这些工具模式以及提示。

2025-08-31 18:09:48 698

原创 Langchain指南-关键特性:如何流式传输可运行项

此界面提供了两种通用的流式内容方法:统一接口• 所有 都内置 (同步)与 (异步)两种流式方法。设计目标• 一旦某一块(chunk)结果就绪,立即推送给调用方,减少等待时间。可行条件• 整条链路中的每一步必须能“按块处理”:– 输入逐块进入 → 即时产生对应的输出块。• 若任何步骤只能一次性处理完整输入,则流式中断。复杂度梯度• 简单:逐 token 转发 LLM 输出。• 复杂:在完整 JSON 尚未生成前,逐步解析并流式返回部分 JSON 片段。入门建议• 从最核心的 LLM 开始体验

2025-08-31 16:36:17 788

原创 新手村:正则化

正则化是机器学习中防止过拟合的核心技术,通过在损失函数中添加惩罚项(如L1、L2)控制模型复杂度。L1正则化通过稀疏性实现特征选择,L2通过平滑权重减少波动,弹性网络则结合两者优势。掌握正则化需要理解其数学原理、应用场景及参数调优方法。后续可进一步学习贝叶斯正则化、深度学习中的正则化技术,以应对复杂模型的过拟合问题。

2025-04-23 22:41:30 692

原创 新手村:过拟合(Overfitting)

**过拟合** 是指机器学习模型在 **训练数据** 上表现优异(如高准确率或低误差),但在 **新数据**(如测试集或验证集)上表现显著下降的现象。 - **核心原因**:模型过度学习了训练数据中的 **噪声、细节或随机波动**,而未能捕捉数据的 **本质规律**。- **本质**:模型的复杂度远超问题实际所需,导致对训练数据的“死记硬背”而非“理解”。

2025-04-23 22:31:47 1049

原创 新手村:逻辑回归-理解04:熵是什么?

逻辑回归中的熵理论是机器学习的重要基础之一。通过学习熵、交叉熵以及它们在逻辑回归中的应用,你可以更好地理解分类模型的工作原理。建议按照上述计划逐步深入学习,并通过代码实践巩固理论知识。

2025-03-25 01:30:38 1019

原创 新手村:逻辑回归-理解03:逻辑回归中的最大似然函数

似然函数Lwb∏i1Nyiyi1−yi1−yiLwbi1∏N​y​iyi​​1−y​i​1−yi​对数似然函数log⁡Lwb∑i1Nyilog⁡yi1−yilog⁡1−yilogLwbi1∑N​yi​logy​i​1−yi​log1−y​i​。

2025-03-25 01:26:26 1361

原创 新手村:逻辑回归-01.什么是逻辑回归-初识速学

逻辑回归()是机器学习中一种基础且重要的分类算法,常用于二分类问题(如垃圾邮件检测、疾病诊断等),而非预测连续数值。它是机器学习和统计学中应用最广泛的模型之一,尽管名字中包含“回归”,但它本质上是一个分类模型线性组合特征:将输入与权重结合;概率转换:用Sigmoid函数输出概率;参数优化:通过极大似然估计找到最佳参数;决策边界划分:根据概率阈值(如0.5)分类。扩展思考如何处理非线性可分数据?(引入多项式特征或核方法)如何防止过拟合?(正则化、交叉验证)逻辑回归能否用于多分类问题?

2025-03-23 00:16:03 3988 2

原创 新手村:逻辑回归-理解02:逻辑回归中的伯努利分布

伯努利分布在逻辑回归中的潜在含义及其与后续推导的因果关系

2025-03-22 23:36:25 946

原创 新手村:逻辑回归-理解01:目标变量、伯努利分布的概率、特征X之间的关系

逻辑回归 理解:解释逻辑回归中目标变量 𝑌Y、伯努利分布的概率 𝑝p 即 𝑃(𝑦=1∣𝑥)P(y=1∣x)和输入特征 𝑥x 之间的关系。假设我们想预测某人是否会购买某款新手机。

2025-03-22 22:22:44 1021

原创 新手村:协方差、方差、标准差的作用

主题描述数据的重要性解释为什么我们需要分 析数据统计学简介简述统计学的基本概念及其在数据分析中的作用。

2025-03-17 23:13:11 968

原创 新手村;相关度分析方法

目标:理解相关分析的定义、应用场景及基本工具。知识点:教学示例:销售与广告投入的关系目标:掌握不同相关系数的计算方法及适用场景。知识点:扩展示例:计算皮尔逊相关系数目标:通过代码验证理论,理解相关分析在实际中的应用。代码示例(Python+NumPy+SciPy):阶段4:进阶与扩展目标:探索相关分析的局限性及高级应用。知识点:如何选择皮尔逊还是斯皮尔曼相关系数?卡方检验适用于什么场景?相关系数接近0是否意味着无关?

2025-03-17 17:36:18 719

原创 新手村:逻辑回归

通过代码验证理论,理解逻辑回归在实际中的应用。:理解逻辑回归的定义、输入输出关系及核心思想。:掌握逻辑回归的数学推导及优化过程。:探索逻辑回归的局限性及高级应用。

2025-03-17 11:29:58 643

原创 新手村: 模型评估方法-线性回归评估方法

线性回归模型的评估通常涉及多种指标,以全面了解模型的性能。常用的评估方法包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数 ( R^2 )。以下是这些评估方法的详细说明以及如何在代码中实现它们。

2025-03-17 00:49:15 1039

原创 新手村:数据预处理-异常值检测方法

异常检测是机器学习中关键的预处理步骤,其核心是区分“正常”与“异常”数据。学习路径应从统计方法(如Z-score、IQR)开始,逐步过渡到复杂模型(如LOF、Isolation Forest)。实际应用中需结合业务场景选择算法,并通过可视化和评估指标(如F1分数、ROC-AUC)验证效果。进阶学习可探索深度学习和实时检测技术,以应对复杂数据挑战。

2025-03-16 23:35:50 1133

原创 新手村:数据预处理-特征缩放

方法描述适用场景优点缺点标准化将特征转换为均值为0,标准差为1的标准正态分布。线性回归、逻辑回归、SVM、KNN、神经网络等。不受数据范围影响,适用于大多数算法。对异常值较为敏感,可能导致极端值的影响被放大。归一化(Min-Max缩放)将特征缩放到一个特定范围(通常是[0, 1])。需要将数据限制在特定范围内的情况。数据范围固定,适用于需要严格控制输出范围的场景。受数据范围影响较大,对异常值敏感,可能导致信息丢失。

2025-03-16 23:25:07 943

原创 新手村:数据预处理-缺失值补充策略

通过上述表格和示例代码,您可以更好地理解不同的缺失值补充策略及其应用场景。删除含有缺失值的行或列:适用于缺失值较少的情况,简单但可能导致数据丢失。用固定值填充:适用于大多数情况,但需谨慎选择填充值以避免引入偏差。用插值法填充:适用于有序数据,能较好地保留趋势。用模型预测填充:适用于复杂数据集,但实现复杂且计算成本较高。

2025-03-16 22:18:25 464

原创 新手村:混淆矩阵

通过本教程,学生将掌握混淆矩阵的构建、核心指标的计算与分析,并能够通过代码实现模型评估。后续可深入学习ROC-AUC曲线、多分类场景及实际应用中的优化策略,逐步构建更鲁棒的分类模型。A:假设数据中95%为负类,模型全预测负类,准确率可达95%,但完全忽略了正类样本,此时需用召回率或F1分数评估。A:精准率 = TP/(TP+FP),召回率 = TP/(TP+FN)。A:β>1时,召回率权重更高(如医疗诊断);则精准率是预测为正类(第二列)中的正确比例,召回率是实际为正类(第二行)中的正确比例。

2025-03-16 16:16:32 914

立体flowplug i吗3我io'k

liteflow三国哈哈哈

2025-04-27

babeldoc的离线依赖 model和fonts ,放入.cache/babeldoc

babeldoc的离线依赖 model和fonts ,放入.cache/babeldoc

2025-04-23

adobe 字体文件 中文字

字体美化大师姐

2025-04-23

noto文件下载 Google

not文件下载

2025-04-23

cn pp'cycl-server-infercrv4-rec-server-infer

'cycloneboy/ch_PP-OCRv4_rec_server_infer

2025-04-23

布局检测模型 doclayout 图片

自愿返回大冒险。

2025-04-23

pdfcccccccc

pdfcccccccc

2025-04-17

pptist code ddddddd

pptist code ddddddd

2025-03-11

实战-波士顿房价预测数据集

实战-波士顿房价预测数据集

2025-03-15

知识图谱-Neo4j-官方教材-cata

知识图谱-Neo4j-官方教材-产品-目录-供应商

2025-02-28

知识图谱-Neo4j-官方教材-供应商

知识图谱-Neo4j-官方教材-产品-目录-供应商

2025-02-28

知识图谱-Neo4j-官方教材-产品-目录-供应商

知识图谱-Neo4j-官方教材-产品-目录-供应商

2025-02-28

大型语言模型应用程序栈的关键要素与构建 - LLMs应用开发与集成

内容概要:本文主要介绍了有关LLM(大规模语言模型)的应用程序栈的重要组成部分,包括用于提供上下文的数据集,以及提示词(prompts)、查询请求和输出响应间的交互。为了进一步了解相关项目,可以通过GitHub搜索'langgenius/dify'来获得更多信息源码等。 适用人群:致力于研究或使用大规模语言模型技术的专业人士或开发团队。 使用场景及目标:帮助开发者熟悉大型语言模型应用程序开发过程中所需要考虑的各种因素和技术要点,确保对模型训练、部署及优化有深入理解。 其他说明:文中提到了一个可以在GitHub上查找的具体仓库,它可能包含了更多实际案例或者开源代码,对于想要深入了解这个领域的从业者来说非常有价值。

2025-02-20

Vector database学习资料

Vector database学习资料

2025-02-17

LlamaFactory-Deepseek模型微调+CUDA Toolkit+cuDNN安装

llamaFactory/data/identity.json 身份数据集测试

2025-02-14

规则模式pdf-中文版

规则模式pdf中文版

2023-10-12

dmg2iso.rar

工具

2016-08-21

LegacyEmpireEFI_V108

这个工具是virtualbox安装mac os x 系统时的引导文件。帮助我们安装mac的

2016-08-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除