- 博客(162)
- 资源 (2)
- 收藏
- 关注
原创 Langchain_v1.0|高级使用-上下文工程
本文介绍了LangChain框架中的上下文工程概念,重点阐述了如何通过控制三类上下文(模型上下文、工具上下文、生命周期上下文)来提升AI智能体的可靠性、安全性和效率。文章首先解释了上下文工程的定义和重要性,然后详细分析了智能体的工作循环机制、三大数据源(运行时配置、会话状态、长期记忆)以及模型上下文的具体控制方法,包括系统提示、消息处理、工具选择和响应格式等关键要素。最后提供了分步练习和最佳实践指导,帮助开发者掌握动态上下文智能体的配置技巧。
2026-02-04 00:26:28
344
原创 Langchain_v1.0|高级使用-Runtime 运行时
本文介绍了LangChain框架中运行时(Runtime)的高级使用方法。运行时包含上下文(Context)、状态存储(Store)和流写入器(Stream writer)三个核心组件。开发者可以通过定义context_schema来指定运行时上下文的结构,并在工具和中间件中访问这些运行时信息。在工具内部,可以通过ToolRuntime参数访问上下文和长期存储;在中间件中,则可通过Runtime对象实现动态提示生成、请求日志记录等功能。文章通过具体代码示例展示了如何利用运行时特性来增强代理(agent)的功
2026-02-04 00:23:43
278
原创 Langchain_v1.0|高级使用-Guardrails 防护栏
本文介绍了LangChain框架中的Guardrails(防护栏)功能,用于构建安全合规的AI应用程序。主要内容包括:1)防护栏通过中间件在代理执行关键点进行内容验证和过滤,防止PII泄露、注入攻击等风险;2)提供确定性防护(基于规则)和基于模型的防护两种实现方式;3)内置PII检测功能,支持脱敏、掩码、哈希和拦截四种处理策略;4)支持人工干预和自定义防护规则组合。文章还展示了代码示例,演示如何配置邮箱、信用卡和API密钥的防护措施。这些功能特别适用于医疗、金融等需要处理敏感数据的场景。
2026-02-04 00:22:46
330
原创 Langchain_v1.0|middleware中间件
本文介绍了LangChain中间件(Middleware)的功能和应用。中间件用于控制和自定义智能体执行的每个步骤,适用于日志记录、提示转换、重试逻辑、速率限制等场景。文章概述了代理循环流程和中间件的钩子机制,并详细列出了内置中间件(如摘要生成、人工审核、调用限制、PII检测等)及其功能。此外还介绍了自定义中间件的创建方法(装饰器或类实现)和执行顺序控制,提供了动态模型选择、工具监控等示例场景。最佳实践建议生产环境启用安全限制,开发时可使用工具模拟器。
2026-01-29 00:23:40
351
原创 Langchain_v1.0|核心模块-core_component_07_streaming
本文介绍了LangChain v1.0中的流式传输功能,重点讲解了核心模块的streaming特性。主要内容包括:支持的三种流模式(updates、messages、custom),分别用于流式传输代理进度、LLM生成令牌和自定义数据;如何通过stream或astream方法实现代理进度和LLM令牌的实时流式传输;并提供了具体代码示例展示工具调用和最终响应的流式输出效果。这些功能显著提升了基于LLM应用的响应速度和用户体验。
2026-01-28 21:23:15
751
原创 Langchain_v1.0|核心模块-core_component_06_structured_output
本文介绍了LangChain框架中结构化输出的核心功能,主要包括响应格式控制、提供者策略和工具调用策略三种实现方式。结构化输出允许代理以JSON对象、Pydantic模型等可预测格式返回数据,便于应用程序直接使用。ProviderStrategy利用模型原生支持的结构化输出功能(如OpenAI、Claude等),提供高可靠性和严格验证;ToolStrategy则通过工具调用方式兼容所有支持工具调用的模型。文章详细说明了两种策略的参数配置方法,包括schema定义、严格模式设置、错误处理机制等,并提供了代码示
2026-01-28 21:19:36
887
原创 Langchain_v1.0|核心模块-core_component_05_short_term_memory
本文介绍了Langchain_v1.0中的短期记忆(Short Term Memory)模块,该功能使AI代理能够记住单个线程或对话中的先前交互。文章详细阐述了短期记忆的概述、使用方法、生产环境配置以及自定义选项。关键点包括:短期记忆通过检查点(checkpointer)实现线程级持久化,支持内存或数据库存储;长对话场景下需采用修剪、删除或总结消息等优化策略;演示了如何通过SQLite和PostgreSQL在生产环境中实现记忆存储。此外,还介绍了访问内存的常见模式,包括通过工具和提示来读写短期记忆数据。
2026-01-28 21:18:48
898
原创 Langchain_v1.0|核心模块-core_component_04_agent
本文介绍了Langchain_v1.0中代理(agent)的核心组件与实现方法。代理通过语言模型和工具构建推理系统,使用create_agent实现基于图的运行时处理流程。核心组件包括模型(Model)配置(支持静态和动态选择)、工具(Tools)定义与错误处理、系统提示(System Prompt)等。文章详细展示了静态模型配置示例和动态模型选择中间件实现,后者可根据消息数量自动切换不同模型。此外还涉及结构化输出、记忆(Memory)管理和流式传输等高级功能,为构建智能代理系统提供了全面的技术指导。
2026-01-28 21:17:26
930
原创 Langchain_v1.0|核心模块-core_component_03_tool
本文介绍了Langchain工具模块的核心功能,重点讲解了工具的创建和使用方法。主要内容包括:1)基本工具定义,通过@tool装饰器快速创建工具;2)自定义工具属性,包括名称和描述的修改;3)高级模式定义,使用Pydantic模型或JSON模式定义复杂输入参数;4)工具调用示例,展示了如何将工具绑定到模型并执行。文章还涉及工具运行时上下文访问、状态管理和内存存储等高级功能,为开发者提供了在Langchain框架中扩展代理功能的实用指南。(149字)
2026-01-28 21:15:26
774
原创 Langchain_v1.0|核心模块-core_component_02_messages
本文介绍了LangChain中的消息模块核心功能,主要包括六种消息类型及其应用场景。系统消息(SystemMessage)用于设定模型行为准则,人类消息(HumanMessage)代表用户输入,AI消息(AIMessage)包含模型响应,工具消息(ToolMessage)表示工具调用输出。消息支持文本、图像、音频等多媒体内容,可通过字典格式或对象形式传递。文章还展示了消息提示在对话管理、多轮交互中的应用,以及系统消息在设定模型角色和行为规范方面的作用。通过代码示例演示了如何创建消息对象并与模型交互,实现诗歌
2026-01-28 21:04:31
841
原创 Langchain_v1.0|核心模块-模型Model
本文介绍了LangChain框架中模型模块的核心功能和使用方法。主要内容包括:1)模型初始化方式,支持多种参数配置;2)关键操作方法(invoke、stream、batch)及其应用场景;3)工具调用功能,包括强制调用、并行调用等高级用法;4)结构化输出和多模态处理能力;5)高级特性如本地模型、提示缓存、速率限制等。文章通过代码示例展示了如何调用不同模型进行文本生成和对话处理,并详细说明了各项参数的配置方法。该模块为构建智能代理提供了灵活的模型调用接口,支持从简单文本处理到复杂代理工作流的开发需求。
2026-01-28 20:56:03
736
原创 20250914-03: Langchain概念:提示模板+少样本提示
方面单轮对话示例多轮对话示例形式简单的Q-A 对(一问一答)完整的对话历史(多问多答)内容只展示正确的最终答案展示错误 -> 反馈 -> 纠正的全过程好比闪卡/备忘录:只记答案教学视频/案例研究:分析错题,讲解思路教学目标教会模型“是什么教会模型“为什么”以及“如何改进复杂度低高适用任务事实问答、翻译、简单总结风格写作、复杂推理、安全拒绝、交互式任务如果你想让模型学会回答简单明了的问题,就用单轮示例。像喂给它一对对的(问题,答案)。如果你想教模型完成一件复杂的、容易出错的事情,就给它讲个。
2025-09-14 21:34:56
1071
原创 系统性掌握 LangChain 的核心概念体系
本文提出了一套为期4周的系统性学习计划,旨在帮助开发者掌握LangChain框架的核心概念体系。学习路径分为6个模块:核心运行机制、模型与输入输出、记忆与上下文管理、知识增强(RAG)、决策与行动(Agent)以及工程化与质量保障。每个模块都包含明确的学习目标、核心概念和渐进式实践任务,通过从基础组件到完整系统的递进训练,最终实现构建具备记忆、检索、工具调用和评估能力的AI应用。该计划强调刻意练习和成果导向,每周聚焦1-2个模块,最终产出包括带记忆的聊天机器人、PDF问答系统和智能代理等实践项目。
2025-09-14 15:31:32
736
原创 20250914-02: Langchain概念:异步编程(Async)
本文将介绍LangChain中的异步编程概念。异步编程通过非阻塞方式处理I/O密集型任务(如API调用、数据库访问),可显著提升效率。LangChain为同步方法提供异步版本(前缀为"a"),如ainvoke对应invoke。当异步实现不可用时,LangChain会委托给同步方法,虽带来轻微性能开销但保证兼容性。文章还通过"厨房"比喻形象解释同步与异步的区别,以及性能开销的来源,包括委托同步方法和处理小任务时的额外成本。
2025-09-14 15:18:48
642
原创 20250914-01: Langchain概念:流式传输(Streaming)
从大型语言模型(LLM)生成完整响应通常会产生几秒钟的延迟,在涉及多次模型调用的复杂应用程序中,这种延迟会更加明显。这种延迟会更加明显。幸运的是,大型语言模型以迭代方式生成响应,允许在生成过程中显示中间结果。通过流式传输这些中间输出,LangChain 可以在基于大型语言模型的应用程序中实现更流畅的用户体验,并在其核心设计中提供了对流式传输的内置支持。在本指南中,我们将讨论大型语言模型应用程序中的流式传输,并探讨 LangChain 的流式传输 API 如何促进应用程序中各种组件的实时输出。
2025-09-14 14:25:41
957
原创 20250913-04: Langchain概念:LangSmith 追踪(Tracing)
本文介绍了LangChain中的追踪(Tracing)功能及其在LangSmith平台上的实现。追踪是记录应用程序从输入到输出执行步骤的过程,对调试和诊断复杂问题至关重要。文章详细说明了如何配置LangSmith追踪功能,包括安装依赖项、设置API密钥、环境变量,以及通过代码示例展示如何追踪OpenAI调用和整个应用程序的执行流程。此外,还介绍了LangSmith平台的高级功能,如监控、自动化、收集反馈以及追踪RAG应用等,帮助开发者更好地观测和优化LLM应用程序的性能。
2025-09-14 01:04:13
902
原创 20250913-03: Langchain概念:回调
本文介绍了LangChain框架中的回调系统,该系统允许开发者在LLM应用程序执行的不同阶段注入自定义逻辑,用于日志记录、监控等任务。回调处理程序分为同步和异步两种类型,通过事件触发对应方法(如on_llm_start)。回调可通过请求时或构造函数两种方式传递,但需注意构造函数回调不会被子对象继承。此外,在Python<=3.10中异步运行时需手动传播回调到子对象,否则可能导致事件未被捕获。
2025-09-14 00:11:21
416
原创 20250913-02: Langchain概念:表达式语言(LCEL)
咖啡师(在这里相当于 LangChain)会根据你的要求,自行决定最佳的步骤、水温、水流等来优化制作过程。是一个组合原语,它允许您并发运行多个 runnable,并为每个 runnable 提供相同的输入。请记住,runnable 是并行执行的,因此虽然结果与上面所示的字典推导式相同,但执行时间要快得多。许多这些传统链隐藏了诸如提示之类的关键细节,并且随着各种可行模型的出现,自定义变得越来越重要。的用法非常常见,因此我们创建了它们的简写语法。——它允许 LangChain 以优化的方式处理链的运行时执行。
2025-09-13 23:22:04
1610
原创 20250913-01: Langchain概念:Runnable可运行接口
Runnable 方式定义了一个标准接口,允许 Runnable 组件调用invoked:将单个输入转换为输出。批量处理Batched:将多个输入高效地转换为输出。流式传输Streamed:输出在其生成时进行流式传输。检查 Inspected:可以访问有关 Runnable 输入、输出和配置的示意信息。组合 Composed:可以使用LangChain 表达式语言 (LCEL)将多个 Runnable 组合在一起以创建复杂的管道。请查看LCEL 速查表。
2025-09-13 20:51:20
1064
原创 20250911-01: 概念:基础认知--消息
用于设定AI行为或对话上下文的系统指令消息,LangChain会根据提供商能力自动适配传递方式。🔹 HumanMessage:代表用户输入的消息,支持文本或自动转换字符串,是对话的触发起点。模型生成的响应消息,可包含文本、tool_calls或多媒体内容,是对话的核心输出。携带工具执行结果的消息,必须包含tool_call_id以关联原始调用,是工具调用闭环的关键。流式响应中的消息片段,支持运算符聚合为完整AIMessage,用于实时输出场景。消息是对话的。
2025-09-11 23:47:36
730
1
原创 20250909-01: 概念:基础认知--聊天模型
LLM:大型语言模型(LLM)是先进的机器学习模型,擅长文本生成、翻译、摘要、问答等广泛的语言相关任务,无需针对每个场景进行任务特定的微调。现代 LLM :通常通过聊天模型接口访问,该接口接受消息列表作为输入,并返回一条消息作为输出。工具调用:聊天模型自带工具调用,可直接连外部服务、API 和数据库,顺便把非结构化数据秒变结构化。结构化输出:一种使聊天模型以结构化格式响应的技术。(例如与给定模式匹配的 JSON)多模态:处理文本以外数据(例如图像、音频和视频)的能力。
2025-09-10 01:08:53
773
原创 20250908-02:运行第一个 LLM 调用程序
本文介绍了如何使用LangChain框架快速构建一个简单的LLM调用程序。主要内容包括:设置LangChain开发环境;使用提示模板和智谱GLM模型构建基础应用;对比.invoke()和.stream()的调用方式差异;通过LangSmith进行调试追踪。教程提供了代码模板和GitCode源码链接,帮助开发者在1小时内完成首个LLM应用,实现文本翻译功能并提交到代码仓库。关键学习点包括语言模型调用、提示模板使用和输出解析器配置。
2025-09-08 23:51:29
962
原创 20250908-02:搭建 Python 开发环境
本文介绍了搭建Python开发环境的核心步骤,重点围绕Conda和UV工具的使用展开。主要内容包括:1)Conda的功能介绍与环境管理(创建/切换虚拟环境、包安装);2)UV工具的高效特性(比pip快10-100倍)及其核心功能(项目管理、依赖同步);3)国内镜像源配置(清华源);4)关键操作指令清单(环境创建、包管理、项目初始化等)。文章提供了完整的开发环境搭建方案,强调通过虚拟环境实现项目隔离,并附有工具速查表链接,适合需要快速配置Python开发环境的读者参考。
2025-09-08 20:19:40
931
原创 20250907-03:LangChain的六大核心模块概览
✅ LangChain 第一周成长计划:基础认知与环境搭建🎯 本周核心目标(Objective)建立对 LangChain 的系统性认知,完成本地开发环境搭建,并成功运行第一个 LLM 调用程序。具体内容:所需时间:2 小时预期成果:难度控制:i+1 —— 不要求深入代码,只需建立模块“是什么、干什么”的认知地图。资源准备:关键内容(即六大核心模块):LangChain 为以下主要组件提供标准、可扩展的接口和外部集成格式化和管理语言模型输入输出。 “执行者” :负责与底层大语言模型(LLM
2025-09-07 23:54:27
691
原创 20250907-02:LangChain 架构和LangChain 生态系统包是什么
核心层:定规矩,保兼容,让所有积木能拼在一起。集成层:接外设,通天下,让 AI 能用上各种工具和数据。应用层:搭积木,建应用,用预制件快速组装智能功能。编排部署层:上生产,可运维,让原型变成稳定可靠的服务。
2025-09-07 20:34:31
1257
原创 20250907-0101:LangChain 核心价值补充
LangChain 是一个专为“连接大模型与现实世界、编排复杂任务流程”而设计的开发框架,它让开发者能高效、可靠、可扩展地构建生产级 LLM 应用。
2025-09-07 19:09:38
626
原创 20250907-01:理解 LangChain 是什么 & 为什么诞生
LangChain 并不是一个“银弹”,但它提供了一套标准化、模块化、生产就绪的工具箱,将 AI 应用开发中那些重复、繁琐、易错的“脏活累活”抽象出来,让开发者能够专注于业务逻辑和创新,而不是底层的集成细节。。
2025-09-07 18:15:41
1054
原创 20250906-01:开始创建LangChain的第一个项目
配置JetBrain环境 使用 conda创建的。通过JetBrain Git工具下载【简单】通过Git终端下载【简单】许安装git工具。配置JetBrain Idea uv解释器。工具作为管理和python解析器。配置project.toml文件。执行‘hello world'配置本地JetBrain环境。使用conda 新建一个。参考之前项目配置【已验证】使用jetbrain打开。作为python基础。
2025-09-06 22:48:09
1077
原创 【LangChain:01】✅ 3小时掌握 LangChain 表达式语言 (LCEL) 成长计划 —— 刻意练习版
这篇3小时掌握LangChain表达式语言(LCEL)的刻意练习计划,通过三个阶段系统化学习路径:0.5小时理论学习(理解LCEL设计哲学与核心组件)、1.5小时基础练习(构建顺序链/并行分支/状态管理)和1小时综合应用(RAG链构建与调试部署)。计划强调即时反馈,每项任务都设定了可验证的成果标准,并配套官方文档、视频教程和在线练习平台等资源。完成训练后,学习者将掌握LCEL的核心优势、链式构建能力及生产环境部署技巧,实现从理论到实践的快速跨越。(149字)
2025-09-06 01:26:47
541
原创 OKR目标管理
OKR目标管理是一种通过设定定性目标(O)和量化关键结果(KR)的方法。O需符合SMART原则,明确方向且鼓舞人心;KR需3-5条可衡量结果,完成度0-100%。模板化工具可帮助制定具体计划,如:"在时限内通过行动完成可验证成果,最多重试N次,最终达标并留证"。该方法适用于个人和业务目标管理,强调结果导向和可验证性。
2025-09-06 01:23:20
404
原创 《LangChain从入门到精通》系统学习教材大纲
LangChain的诞生背景:为什么需要LangChain?核心定位:连接大模型与外部世界的“操作系统”典型应用场景:聊天机器人、文档问答、智能代理、自动化流程等LangChain是通往AI应用开发的黄金钥匙。它不仅是一个工具库,更是一种构建智能系统的思维方式。只要你坚持系统学习、动手实践,完全可以在3个月内从小白成长为专家。我会一直在这里支持你。接下来,你可以告诉我:“老师,我现在想从第一课开始,请帮我制定第1周的详细学习计划。期待你的成长!—— 你的LangChain导师 🌟。
2025-09-06 00:04:20
788
原创 刻意练习理论
刻意练习是指有目的、有反馈、专注于突破舒适区目标导向:分解为具体、可衡量的小目标专注投入:全神贯注于当前任务,排除干扰即时反馈:快速获取表现评估,识别不足挑战极限:持续尝试略高于当前能力的任务(最近发展区)
2025-09-03 21:04:04
1217
原创 刻意练习实践说明使用手册
刻意练习实践框架包含五个阶段,对应四张核心卡片。建议按以下顺序使用:fill:#333;color:#333;color:#333;fill:none;目标设定卡调整计划反馈记录卡进度跟踪卡。
2025-09-03 20:59:07
683
原创 Langchain指南-关键特性:使用聊天模型调用工具
为了使模型能够调用工具,我们需要传递描述工具功能及其参数的工具模式。支持工具调用功能的聊天模型实现了一个.bind_tools()方法,用于将工具模式传递给模型。工具模式可以作为 Python 函数(带有类型提示和文档字符串)、Pydantic 模型、TypedDict 类或 LangChain 工具对象传递。后续对模型的调用将传递这些工具模式以及提示。
2025-08-31 18:09:48
757
原创 Langchain指南-关键特性:如何流式传输可运行项
此界面提供了两种通用的流式内容方法:统一接口• 所有 都内置 (同步)与 (异步)两种流式方法。设计目标• 一旦某一块(chunk)结果就绪,立即推送给调用方,减少等待时间。可行条件• 整条链路中的每一步必须能“按块处理”:– 输入逐块进入 → 即时产生对应的输出块。• 若任何步骤只能一次性处理完整输入,则流式中断。复杂度梯度• 简单:逐 token 转发 LLM 输出。• 复杂:在完整 JSON 尚未生成前,逐步解析并流式返回部分 JSON 片段。入门建议• 从最核心的 LLM 开始体验
2025-08-31 16:36:17
867
原创 新手村:正则化
正则化是机器学习中防止过拟合的核心技术,通过在损失函数中添加惩罚项(如L1、L2)控制模型复杂度。L1正则化通过稀疏性实现特征选择,L2通过平滑权重减少波动,弹性网络则结合两者优势。掌握正则化需要理解其数学原理、应用场景及参数调优方法。后续可进一步学习贝叶斯正则化、深度学习中的正则化技术,以应对复杂模型的过拟合问题。
2025-04-23 22:41:30
718
原创 新手村:过拟合(Overfitting)
**过拟合** 是指机器学习模型在 **训练数据** 上表现优异(如高准确率或低误差),但在 **新数据**(如测试集或验证集)上表现显著下降的现象。 - **核心原因**:模型过度学习了训练数据中的 **噪声、细节或随机波动**,而未能捕捉数据的 **本质规律**。- **本质**:模型的复杂度远超问题实际所需,导致对训练数据的“死记硬背”而非“理解”。
2025-04-23 22:31:47
1332
原创 新手村:逻辑回归-理解04:熵是什么?
逻辑回归中的熵理论是机器学习的重要基础之一。通过学习熵、交叉熵以及它们在逻辑回归中的应用,你可以更好地理解分类模型的工作原理。建议按照上述计划逐步深入学习,并通过代码实践巩固理论知识。
2025-03-25 01:30:38
1118
原创 新手村:逻辑回归-理解03:逻辑回归中的最大似然函数
似然函数Lwb∏i1Nyiyi1−yi1−yiLwbi1∏Nyiyi1−yi1−yi对数似然函数logLwb∑i1Nyilogyi1−yilog1−yilogLwbi1∑Nyilogyi1−yilog1−yi。
2025-03-25 01:26:26
1443
babeldoc的离线依赖 model和fonts ,放入.cache/babeldoc
2025-04-23
大型语言模型应用程序栈的关键要素与构建 - LLMs应用开发与集成
2025-02-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅