RAGFlow
和Dify
都是基于大语言模型(LLM)的应用开发平台,具有相似的功能和应用场景,但它们在技术架构、部署要求和用户体验上存在一些差异。
RAGFlow和Dify对比
2025-02-13 22.08
RAGFlow
技术栈:RAGFlow使用Docker和Docker Compose进行部署,需要较高的计算资源和存储空间。其镜像大小达到19.53 GB,
📝 Prerequisites
CPU >= 4 cores
RAM >= 16 GB
Disk >= 50 GB
Docker >= 24.0.0 & Docker Compose >= v2.26.1
If you have not installed Docker on your local machine (Windows, Mac, or Linux), see Install Docker Engine.
部署要求:RAGFlow基于深度文档理解,需要大量的计算资源来处理复杂的查询和生成任务。此外,部署前需要调整内核参数vm.max_map_count至大于等于262144,以确保高效执行。
Dify:
技术栈:Dify的技术栈包括Vue.js、Django、Langchain等,支持多种大语言模型,如Ollama、Azure OpenAI、OpenAI等。
部署要求:Dify的推荐配置较低,仅为CPU 2 cores,RAM