聚类算法-DBSCAN-C++实现

本文介绍了DBSCAN聚类算法的C++实现,包括计算每个点的ε范围内的点数量,确定核心点,连接核心点形成聚类,处理边界点和噪声点。在处理核心点连接时,采用深度优先遍历确保准确性。并通过WPF(C#)技术对聚类结果进行图形化展示,展示了算法在处理不同形状和大小数据的优势,但也指出其在变化密度场景的局限性。
摘要由CSDN通过智能技术生成

程序流程图:


DBSCAN核心功能函数,计算每个point的eps范围内的point数量pts;

对于所有pts >Minpts的point,记为Core point;

对于所有的corepoint,将其eps范围内的core point下标添加到vector<int>::corepts中;

对于所有的corepoint,采用深度优先的方式遍历core point的所有cluster,使得相互连接的core point具有相同的cluster编号;

计算所有pts < Minpts且在Core point范围内的,记为Borderpoint;

将所有Borderpoint加入到任意一个关联的core point;

剩余的point的为Noise point,文件写写入时忽略;

将point信息写入clustering文件,程序结束。

/*
	DBSCAN Algorithm
	15S103182
	Ethan
*/
#include <iostream>
#include <sstream>
#include <fstream>
#include <vector>
#include <ctime>
#include <cstdlib>
#include <limits>
#include <cmath>
#include <stack>
using namespace std;
class point{
public:
	float x;
	float y;
	int cluster=0;
	int pointType=1;//1 noise 2 border 3 core
	int pts=0;//points in MinPts 
	vector<int> corepts;
	int visited = 0;
	point (
### 回答1: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度聚类算法,用于将数据点分为不同的类别。下面是DBSCAN算法的C语言源代码: ```c #include <stdio.h> #include <math.h> // 定义一个数据点的结构体,包含坐标和是否为核心点的标志 typedef struct { float x; float y; int isCore; } Point; // 计算两个数据点之间的欧氏距离 float distance(Point p1, Point p2) { return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2)); } // 判断是否为核心点 int isCorePoint(Point* points, int n, float epsilon, int minPts, int i) { int count = 0; for(int j=0; j<n; j++) { if(distance(points[i], points[j]) <= epsilon) { count++; } } return count >= minPts; } // 找到核心点的所有可达点 void expandCluster(Point* points, int n, float epsilon, int minPts, int clusterId, int* visited, int* clusters) { clusters[n] = clusterId; for(int i=0; i<n; i++) { if(distance(points[n], points[i]) <= epsilon && visited[i] == 0) { visited[i] = 1; if(isCorePoint(points, n, epsilon, minPts, i)) { expandCluster(points, n, epsilon, minPts, clusterId, visited, clusters); } } } } // DBSCAN算法 void dbscan(Point* points, int n, float epsilon, int minPts, int* clusters) { int clusterId = 0; int* visited = (int*)malloc(n * sizeof(int)); memset(visited, 0, n * sizeof(int)); for(int i=0; i<n; i++) { if(visited[i] == 0) { visited[i] = 1; if(isCorePoint(points, n, epsilon, minPts, i)) { clusterId++; expandCluster(points, n, epsilon, minPts, clusterId, visited, clusters); } } } free(visited); } int main() { // 设置数据点和算法参数 Point points[6] = {{1, 2, 0}, {2, 4, 0}, {2, 2, 0}, {8, 7, 0}, {7, 8, 0}, {25, 80, 0}}; float epsilon = 3; int minPts = 2; int clusters[6]; // 执行DBSCAN算法 dbscan(points, 6, epsilon, minPts, clusters); // 打印聚类结果 for(int i=0; i<6; i++) { printf("Point %d belongs to cluster %d\n", i, clusters[i]); } return 0; } ``` 该源代码实现了一个简单的DBSCAN算法,包括计算点之间的欧氏距离、判断是否为核心点、扩展核心点的可达点、执行DBSCAN算法等功能。在该示例中,我们定义了6个二维坐标的数据点,并指定了epsilon和minPts的值。最后输出了每个点所属的聚类结果。 ### 回答2: DBSCAN是一种基于密度聚类算法,它将数据点分为核心点、边界点和噪音点。以下是DBSCAN的C语言源代码的简要解释。 DBSCAN的C源代码实现了以下几个主要步骤: 1. 导入必要的头文件和定义全局变量。 2. 定义结构体对象,用于存储数据点的坐标信息。 3. 定义数据点之间的欧氏距离计算函数,用于判断数据点是否属于同一簇。 4. 实现DBSCAN算法的核心函数。 核心函数的实现包括以下几个主要步骤: 1. 读取数据点坐标信息并将其存储在结构体对象中。 2. 根据给定的邻域半径和最小密度阈值,计算出每个数据点的邻域。 3. 对每个数据点进行分类(核心点、边界点或噪音点)。 4. 根据邻域关系进行数据点的簇扩展,直到所有数据点都被访问过。 在具体实现DBSCAN算法时,需要根据实际问题中的数据和需求进行一些参数的调整,如邻域半径和最小密度阈值。 总而言之,以上是DBSCAN的C语言源代码的简要解释。实际使用时,要根据具体问题进行参数调整,并结合其他数据处理和可视化技术来更好地理解和分析数据。 ### 回答3: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度聚类算法,用于将数据点划分到不同的簇中。下面是DBSCAN的源代码解释及示例。 DBSCAN算法的主要思想是通过计算数据点周围的密度来判断是否属于同一簇,同时通过连接具有足够密度的数据点来形成簇。算法的输入参数包括数据点集合、半径epsilon和最小邻居数minPts。 以下是DBSCAN算法的主要步骤: 1. 随机选择一个未访问的数据点P。 2. 判断P的epsilon邻域内的数据点数目是否大于等于minPts。若是,则将P标记为核心对象,否则标记为噪声点。 3. 对于核心对象,利用深度优先搜索(DFS)或广度优先搜索(BFS)将其密度直达的所有数据点分配到同一个簇中。 4. 重复步骤1-3,直到所有的数据点都被访问过。 以下是一个简单的DBSCAN源代码示例: ```python # DBSCAN算法实现 def dbscan(data, epsilon, minPts): clusters = [] # 存储最终的簇 visited = set() # 存储已访问的数据点 noise = set() # 存储噪声点 def expand_cluster(data, p, neighbors, cluster): cluster.append(p) visited.add(p) while neighbors: q = neighbors.pop() if q not in visited: visited.add(q) q_neighbors = region_query(data, q, epsilon) if len(q_neighbors) >= minPts: neighbors.extend(q_neighbors) if q not in [c for c in clusters]: cluster.append(p) def region_query(data, p, epsilon): neighbors = [] for q in data: if distance(p, q) <= epsilon: neighbors.append(q) return neighbors for p in data: if p in visited: continue visited.add(p) neighbors = region_query(data, p, epsilon) if len(neighbors) < minPts: noise.add(p) else: cluster = [] clusters.append(cluster) expand_cluster(data, p, neighbors, cluster) return clusters, noise # 数据点集合 data = [(0, 0), (1, 1), (2, 2), (10, 10), (11, 11), (12, 12), (20, 20)] # 调用DBSCAN算法 clusters, noise = dbscan(data, 2, 3) # 打印结果 print("Clusters: ", clusters) print("Noise: ", noise) ``` 上述代码以Python语言实现DBSCAN算法,其中包括主要步骤和必要的辅助函数。上述示例数据点集合中,根据给定的epsilon为2和最小邻居数minPts为3进行聚类,最终得到的簇列表为`Clusters: [[(0, 0), (1, 1), (2, 2)], [(10, 10), (11, 11), (12, 12)], [(20, 20)]]`,并且没有噪声点。
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值