数据分析看关晓彤的招黑之路

640?wx_fmt=gif&wxfrom=5&wx_lazy=1

作者简介Introduction

挖数 腾讯数据产品经理 & 段子手

个人微信公号:washu66


往期回顾

99.9%的数据分析师,都做不到这些

爬虫数据分析【旅游篇】

你的生殖冲动,繁衍了这个价值1000亿美金的产业

数据分析告诉你,韦小宝跟他七个老婆哪个最亲?

王建林的一个亿,靠打工能实现么?

640?wx_fmt=png&wxfrom=5&wx_lazy=1

2010



说关晓彤含着金钥匙出身毫不为过,从她2010年3月17日发的第一条微博起,就开始了她的晒合影之路

640?wx_fmt=jpeg

这都是她2010年微博发的,那时她才13岁,资源实在丰厚,同一年,她的学霸人设也初见端倪

640?wx_fmt=jpeg


这一年,她的人气也只是网红级别,爬取她的微博数据,从她微博被点赞的数量可见一斑

640?wx_fmt=jpeg

点赞数在 150-300 之间,普普通通,未炼神功



2011



2011年,她的微博粉丝是 7万7,还未成为众人diss的 “国民闺女

640?wx_fmt=jpeg

不同的是,开始上综艺了,《天天向上》

640?wx_fmt=jpeg


640?wx_fmt=jpeg

这一年,点赞数有所下滑,大都在 50 左右,无人问津



2012-2013



640?wx_fmt=jpeg

2012-2013年,平平无奇的2年,微博被点赞数在 50-300 之间,到 2013年尾,可以看到有一些起飞的趋势



2014



640?wx_fmt=jpeg

2014年是关晓彤腾飞的一年,这个腾飞不在于她微博点赞数在年尾飙到 5000-1万5 之间,也不在于她跟赵丽颖和李易峰一起拿奖 (最喜爱新人奖~Excuse me  (⊙ˍ⊙))

640?wx_fmt=jpeg


也不在于她去深圳卫视的综艺《极速前进》上亲吻人家宝宝,还要暴揍人家

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg


而是,她主演了她第一部网红成名电影《浪漫天降》铛铛铛~

640?wx_fmt=jpeg


在剧中她勾搭夏雨,大跳艳舞

640?wx_fmt=jpeg

640?wx_fmt=jpeg

亲切的笑容仿佛要把你吃掉,勾魂的舞姿看完感觉马上要死掉  Σ( ° △ °|||)

有了神剧作垫脚石,她自然能高飞 !!!这一年,她17岁。忘说了,同年她还参演了另一部稍显正常的电影《左耳》



2015



640?wx_fmt=jpeg

2015年,她的微博被点赞数在 2-5万 之间,一年到头基本是在宣传她的神作《浪漫天降》,以及参演的电影《左耳》


这年,也是她卧薪尝胆的一年,因为属于关晓彤的盛宴,将在下个年度到来 ( ̄0  ̄)y



2016



640?wx_fmt=jpeg

2016年,她高考揭榜,超出艺考本科线206分考上北京电影学院,同时,媒体开始炒她“国民闺女”的称号,家庭背景,童星出道的牛逼史,也被拿出来吹了又吹

640?wx_fmt=jpeg


同时间,微博被点赞数量也上了十万级,年底稳定在 10-40万 之间。

对了,这年她在快本弹了马思纯的嘴

640?wx_fmt=jpeg

这个黑点一直穿越到2018年的现在,与她如影随形  ╮(╯▽╰)╭


2017-现在



640?wx_fmt=jpeg

终于到2017年了,这一年她伤了很多女孩纸的心  ( ̄▽ ̄)",也迎来了被diss的狂潮,2017年10月8日随着鹿晗一条示爱的微博,整个娱乐圈炸了,那一天她的微博的被点赞数去到 258万


有趣的是,跟鹿晗在一起并没有给她带来更多的铁粉,这点从她微博被点赞数可以看粗来,在一起后她的被点赞数不升反降,2017年底到2018年维持在 10-30万 之间

640?wx_fmt=jpeg

其实没失效,跟鹿晗在一起吗,大大增加了她的曝光度,从她的代言可以看粗来

640?wx_fmt=jpeg

代言接到手软,收入估计已经晋升亿级别


更招黑的是她的神演技,完全辜负了北影第一名的称号呀 ( ̄0  ̄)y  ,2017年在《极光之恋》延续了她的尬舞,从中国尬到美国,尴尬指数Max !  

640?wx_fmt=gif

640?wx_fmt=gif


说了这么多,回过头问自己一个问题,我们在diss关晓彤的时候,实际是在diss什么?


实际是在diss那种能力和知名度也可以说财富,荣耀等极度不匹配的人。


她出生就有逆天资源,她人生一路开挂,各路神仙纷纷助攻,她拥有的财富以亿计,但去掉这些,真正靠她自己努力积累的,比如演技之类,又有多少?


当这样的人每天神烦地霸屏,又是代言,又是尬舞,又是综艺节目,你不diss她diss谁   ╮( ̄▽ ̄)╭

640?wx_fmt=jpeg





腻想学数据分析么,腻想成为靠谱的数据分析师为企业创造价值么,或者,腻想成为一个船新的,跟我一样介么腻害的数据段子手?


跟我一起参加 知乎大V 接地气的陈老师 的 免费课程 《数据分析师成长路上的必备能力》,点击原文获取链接 


640?wx_fmt=gif

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值