作者:黄天元,复旦大学博士在读,目前研究涉及文本挖掘、社交网络分析和机器学习等。希望与大家分享学习经验,推广并加深R语言在业界的应用。
邮箱:huang.tian-yuan@qq.com
经常玩数据竞赛的人几乎达成了一个共识,就是建模过程大家都大同小异,但是特征工程则至关重要。数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。这里将会介绍一些最基本的特征工程方法以及代码的实现,供大家参考。这次的数据可以在下面网站找到:
https://github.com/dipanjanS/practical-machine-learning-with-python/tree/master/notebooks/Ch04_Feature_Engineering_and_Selection/datasets
Python
基本设置
#加载包
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import scipy.stats as spstats
#对图像输出的统一设置
%matplotlib inline
mpl.style.reload_library()
mpl.style.use('classic')
mpl.rcParams['figure.facecolor'] = (1, 1, 1, 0)
mpl.rcParams['figure.figsize'] = [6.0, 4.0]
mpl.rcParams['figure.dpi'] = 100
file_path = "G:/Py/practical-machine-learning-with-python-master/notebooks/Ch04_Feature_Engineering_and_Selection/"
原始数据特征
看到这份数据介绍的时候我也是惊呆了,这是关于“口袋妖怪”游戏的一个数据集,上面是关于一些妖怪们的攻击力、防御力、生命值、速度之类的参数,这个动画在我那个年代叫做“宠物小精灵”...Anyway,我们这个例子要看的就是数值型变量的基本特征,我们选其中三个进行观察。
poke_df = pd.read_csv(file_path + 'datasets/Pokemon.csv',
encoding='utf-8')
poke_df.head()
(点击放大)
poke_df[['HP', 'Attack', 'Defense']].head()
poke_df[['HP', 'Attack', 'Defense']].describe()
另外,有的原始数值型变量是通过计数来表示的,比如下面例子是用户听歌的记录,其中listen_count记录的是用户听了一首歌多少次。
popsong_df = pd.read_csv(file_path + 'datasets/song_views.csv', encoding='utf-8')
popsong_df.head(10)
二值化
关于听歌的案例,其实有一种粗略的理解,就是听过还是没听过,也就是不管听了多少次,只要不是没听过,就记录为1,其他是0.对于一些问题来说,听歌的绝对次数其实并不重要,比如一首歌的用户覆盖面,就不需要考虑哪些用户特别喜欢这首歌的问题。
#提取用户是否听过这首歌的特征
watched = np.array(popsong_df['listen_count'])
watched[watched >= 1] = 1
popsong_df['watched'] = watched
popsong_df.head(10)
#sklearn用专门的函数来完成这个任务
from sklearn.preprocessing import Binarizer
bn = Binarizer(threshold=0.9)
pd_watched = bn.transform([popsong_df['listen_count']])[0]
popsong_df['pd_watched'] = pd_watched
popsong_df.head(11)
Binarizer函数的阈值设定含义为,小于等于阈值的值都视为0,大于阈值的则视为1.
取整
有时候数据真的不需要太高的精度,高精度的数据会占用更多的内存,因此可以取整处理。应该说这种操作肯定是会损失信息量的,但是如果在一些情况下5.9和6.3被认为没有差别的时候,取整也许更加合适。
items_popularity = pd.read_csv(file_path + 'datasets/item_popularity.csv', encoding='utf-8')
items_popularity
这个例子中,pop_percent的数据是百分比,因此我们可以用几成或百分点为单位来表示。