助力工业物联网,工业大数据之服务域:Shell调度测试【三十三】_shell调度系统(2)

	```
	bash_command='sh xxxx.sh'
	
	```
	- xxxx.sh:根据需求
	
	
		* Linux命令
		* hive -f
		* spark-sql -f
		* spark-submit python | jar
+ **提交**

 
```
python first_bash_operator.py 

```
+ **查看**

 ![image-20211005125514015](https://img-blog.csdnimg.cn/img_convert/8e3259c41f5cf46e8dbf3eb46a086947.png)
+ **执行**

 ![image-20211005125649864](https://img-blog.csdnimg.cn/img_convert/662efc20785aa4ae81516479f05b9410.png)
  • 小结

    • 实现Shell命令的调度测试

知识点08:依赖调度测试

  • 目标:实现AirFlow的依赖调度测试

  • 实施

    • 需求:使用BashOperator调度执行多个Task,并构建依赖关系

    • 代码

      • 创建
      cd /root/airflow/dags
      vim second_bash_operator.py
      
      
      • 开发
      # import
      from datetime import timedelta
      from airflow import DAG
      from airflow.operators.bash import BashOperator
      from airflow.utils.dates import days_ago
      
      # define args
      default_args = {
          'owner': 'airflow',
          'email': ['airflow@example.com'],
          'email\_on\_failure': True,
          'email\_on\_retry': True,
          'retries': 1,
          'retry\_delay': timedelta(minutes=1),
      }
      
      # define dag
      dag = DAG(
          'second\_airflow\_dag',
          default_args=default_args,
          description='first airflow task DAG',
          schedule_interval=timedelta(days=1),
          start_date=days_ago(1),
          tags=['itcast\_bash'],
      )
      
      # define task1
      say_hello_task = BashOperator(
          task_id='say\_hello\_task',
          bash_command='echo "start task"',
          dag=dag,
      )
      
      # define task2
      print_date_format_task2 = BashOperator(
          task_id='print\_date\_format\_task2',
          bash_command='date +"%F %T"',
          dag=dag,
      )
      
      # define task3
      print_date_format_task3 = BashOperator(
          task_id='print\_date\_format\_task3',
          bash_command='date +"%F %T"',
          dag=dag,
      )
      
      # define task4
      end_task4 = BashOperator(
          task_id='end\_task',
          bash_command='echo "end task"',
          dag=dag,
      )
      
      say_hello_task >> [print_date_format_task2,print_date_format_task3] >> end_task4
      
      
    • 提交

    python second_bash_operator.py 
    
    
    • 查看

    image-20211005131800085

  • 小结

    • 实现AirFlow的依赖调度测试

知识点09:Python调度测试

  • 目标实现Python代码的调度测试

  • 实施

    • 需求:调度Python代码Task的运行

    • 代码

      • 创建
      cd /root/airflow/dags
      vim python_etl_airflow.py
      
      
      • 开发
      # import package
      from airflow import DAG
      from airflow.operators.python import PythonOperator
      from airflow.utils.dates import days_ago
      import json
      
      # define args
      default_args = {
          'owner': 'airflow',
      }
      
      # define the dag
      with DAG(
          'python\_etl\_dag',
          default_args=default_args,
          description='DATA ETL DAG',
          schedule_interval=None,
          start_date=days_ago(2),
          tags=['itcast'],
      ) as dag:
          # function1
          def extract(\*\*kwargs):
              ti = kwargs['ti']
              data_string = '{"1001": 301.27, "1002": 433.21, "1003": 502.22, "1004": 606.65, "1005": 777.03}'
              ti.xcom_push('order\_data', data_string)
              
          # function2
          def transform(\*\*kwargs):
              ti = kwargs['ti']
              extract_data_string = ti.xcom_pull(task_ids='extract', key='order\_data')
              order_data = json.loads(extract_data_string)
              total_order_value = 0
              for value in order_data.values():
                  total_order_value += value
              total_value = {"total\_order\_value": total_order_value}
              total_value_json_string = json.dumps(total_value)
              ti.xcom_push('total\_order\_value', total_value_json_string)
              
          # function3
          def load(\*\*kwargs):
              ti = kwargs['ti']
              total_value_string = ti.xcom_pull(task_ids='transform', key='total\_order\_value')
              total_order_value = json.loads(total_value_string)
              print(total_order_value)
              
          # task1
          extract_task = PythonOperator(
              task_id='extract',
              python_callable=extract,
          )
          extract_task.doc_md = """\
      #### Extract task
      A simple Extract task to get data ready for the rest of the data pipeline.
      In this case, getting data is simulated by reading from a hardcoded JSON string.
      This data is then put into xcom, so that it can be processed by the next task.
      """
      	# task2
          transform_task = PythonOperator(
              task_id='transform',
              python_callable=transform,
          )
          transform_task.doc_md = """\
      #### Transform task
      A simple Transform task which takes in the collection of order data from xcom
      and computes the total order value.
      This computed value is then put into xcom, so that it can be processed by the next task.
      """
      	# task3
          load_task = PythonOperator(
              task_id='load',
              python_callable=load,
          )
          load_task.doc_md = """\
      #### Load task
      A simple Load task which takes in the result of the Transform task, by reading it
      from xcom and instead of saving it to end user review, just prints it out.
      """
      
      # run
      extract_task >> transform_task >> load_task
      
      
    • 提交

    python python_etl_airflow.py
    
    
    • 查看

    image-20211005150051298

  • 小结

    • 实现Python代码的调度测试

知识点10:Oracle与MySQL调度方法

  • 目标:了解Oracle与MySQL的调度方法

  • 实施

    • Oracle调度:参考《oracle任务调度详细操作文档.md》

      • step1:本地安装Oracle客户端
      • step2:安装AirFlow集成Oracle库
      • step3:创建Oracle连接
      • step4:开发测试
      query_oracle_task = OracleOperator(
          task_id = 'oracle\_operator\_task',
          sql = 'select \* from ciss4.ciss\_base\_areas',
          oracle_conn_id = 'oracle-airflow-connection',
          autocommit = True,
          dag=dag
      )
      
      
    • MySQL调度:《MySQL任务调度详细操作文档.md》

      • step1:本地安装MySQL客户端

      • step2:安装AirFlow集成MySQL库

      • step3:创建MySQL连接

      • step4:开发测试

        • 方式一:指定SQL语句
        query_table_mysql_task = MySqlOperator(
            task_id='query\_table\_mysql', 
            mysql_conn_id='mysql\_airflow\_connection', 
            sql=r"""select \* from test.test\_airflow\_mysql\_task;""",
            dag=dag
        )
        
        

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

414463)]
[外链图片转存中…(img-hMShrXiX-1714754414463)]
[外链图片转存中…(img-4N4sjiB9-1714754414463)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值