X星球特别讲究秩序,所有道路都是单行线。一个甲壳虫车队,共16辆车,按照编号先后发车,夹在其它车流中,缓缓前行。
路边有个死胡同,只能容一辆车通过,是临时的检查站,如图【p1.png】所示。
X星球太死板,要求每辆路过的车必须进入检查站,也可能不检查就放行,也可能仔细检查。
如果车辆进入检查站和离开的次序可以任意交错。那么,该车队再次上路后,可能的次序有多少种? 为了方便起见,假设检查站可容纳任意数量的汽车。
显然,如果车队只有1辆车,可能次序1种;2辆车可能次序2种;3辆车可能次序5种。 现在足足有16辆车啊,亲!需要你计算出可能次序的数目。
卡特兰数 。如果直接用公式数值过大会爆。
h(n)=C(2n,n)/(n+1)
WA的代码(公式正确,但数字过大):
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
long long katlan[17];
long long i;
for(i=1;i<=16;i++) //通项公式=C(2n,n)/(n+1);
{
long long ans1=1,ans2=1;
for(long long j=i*2;j>i;j--)
{
ans1=ans1*j;
cout<<ans1<<endl;
}
for(long long k=i;k>=1;k--)
{
ans2*=k;
}
katlan[i]=ans1/ans2/(i+1);
}
long long n;
cin>>n;
cout<<katlan[n]<<endl;
}
此时需要另一个递推公式:
h(n)=h(n-1)*(4*n-2)/h(n-1)
AC代码:
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
long long katlan[17];
long long i;
katlan[0]=1;
for(int i=1;i<=16;i++)
{
katlan[i]=katlan[i-1]*(4*i-2)/(i+1);
}
int n;
cin>>n;
cout<<katlan[n]<<endl;
}