基于树的分类器在登革热数据集上的评估
1. 机器学习与登革热疫情背景
机器学习凭借其自动学习海量数据中隐藏模式的能力,大大减轻了人类的分析负担。通过迭代过程,计算机能不断积累经验,在面对新数据时独立做出可靠决策。这使得我们能够构建系统,快速研究与疾病相关的广泛变量,助力医疗从业者更早、更有效地诊断疾病。
登革热自二战后在东南亚爆发全球性疫情,并在随后的15年里愈演愈烈,成为热带和亚热带地区迅速蔓延的流行病。如今,即使在气候寒冷的地区也发现了登革热感染病例,这表明携带该病毒的蚊子适应能力强,也打破了登革热仅存在于热带和亚热带国家的传统认知。每年,登革热感染人数超过3.9亿,近半数世界人口面临感染风险。
与此同时,新冠疫情让人们深刻认识到,当疾病发展成大流行时,人类的应对能力是多么有限。在这场全球抗疫行动中,研究团队纷纷运用机器学习和深度学习算法,利用现有数据辅助医疗人员拯救生命。
2. 新冠与登革热的挑战
登革热病毒和新冠病毒虽然传播方式不同(登革热通过雌性埃及伊蚊叮咬传播,新冠主要由感染者产生的呼吸道飞沫传播),但在发病初期症状相似,如发热、身体疼痛、头痛和腹痛等,且两种病毒在生化和血液学特征上也有相似之处。
在印度,医疗部门在抗击新冠的过程中面临诸多障碍,同时登革热疫情也日益严峻。一方面,资源主要集中在抗击新冠上,导致登革热等其他疾病的治疗和诊断受到严重影响;另一方面,由于两种疾病临床症状相似,给医护人员的诊断带来了极大挑战,容易造成登革热的漏诊。
在亚洲其他地区以及巴西,新冠疫情期间的封锁措施导致蚊虫控制项目停滞,蚊子数量增加,登革热重症病例激增。此外,新冠治疗药物可能会加重登革热患者的病情,
超级会员免费看
订阅专栏 解锁全文
71

被折叠的 条评论
为什么被折叠?



