实战问答:Kafka压测详解

本文介绍了Kafka的压测过程,包括环境准备、工具选择、过程观测和结果分析。强调了线上环境的一致性、使用kafka-producer-perf-test.sh进行测试、通过LogiKM监控瓶颈以及如何识别和解决软件资源瓶颈。最后,提到了压测报告的编写要点和Kafka社区资源。
摘要由CSDN通过智能技术生成

 Q:

请教下 kafka的压测。 我想了解压测的过程方法是什么样的。 我应该使用什么压测方法,压测哪些指标、关注哪些压测结果指标,以及能得到什么样的kafka性能处理结论。

A:

压测是一个系统性问题,非常考验对Kafka的深度掌控能力,需要明确压测场景化目标,Case By Case的压测。

实操层面,涉及仿真环境准备,压测工具的选取,压测过程观测,压测结果分析,压测报告呈现

仿真环境准备,需要在Kafka的机型选择、部署架构、系统参数、配置参数、业务数据等多个维度与线上环境保持一致,最难的部分是构造线上多样数据。

压测工具的选取,如果公司内部有压测平台,可以基于平台实现,如果没有可以考虑Kafka自带的测试工具kafka-producer-perf-test.sh来进行测试,producer发送数据生成方式如下:导了一部分线上流量保存到本地文件,随机读取文件中消息发送。

压测过程观测,需要搭建好Kafka集群的观察体系,推荐使用滴滴的LogiKM,方便观测Kafka软件瓶颈点(网络线程池、业务处理线程池的使用率是非常关键的指标),其次配合系统指标监控平台,观测系统指标瓶颈点(CPU、网络是重点关注点)。

压测结果分析,比较理想的情况是系统资源达到瓶颈,比如网卡、CPU、磁盘IOPS;如果系统资源没有瓶颈,一般就是软件资源瓶颈,需要识别软件的资源瓶颈点,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值