北师大432统计学-2025年考研真题解答

北师大432统计学-2025年考研真题解答

  1. 从区间 ( a , b ) (a,b) (a,b) n n n个样本,给定组数 k k k

    (1)介绍绘制频率直方图的步骤.

    (2) f ( x ) f(x) f(x)为样本密度函数,任给 x , f ^ ( x ) x,\hat{f}(x) xf^(x) f ( x ) f(x) f(x)的估计值,求 f ^ ( x ) \hat{f}(x) f^(x)的均方误差.

    Solution:

    (1)1.确定组数和组距:组数: k k k,组距: b − a k \frac{b-a}{k} kba

    \quad\quad 2.计算频数:对于每个组,统计落在该组内的样本数量,即为该组的频数。

    \quad\quad 3.计算频率:将每个组的频数除以总样本数 n n n ,得到该组的频率。

    \quad\quad 4.绘制直方图:在坐标系中,横轴表示样本值,纵轴表示频率。对于每个组,绘制一个矩形,其宽度为组距,高度为该组的频率。这些矩形相邻排列,形成直方图。

    (2) MSE ( f ^ ( x ) ) = E [ ( f ^ ( x ) − f ( x ) ) 2 ] \text{MSE}(\hat{f}(x)) = E[(\hat{f}(x) - f(x))^2] MSE(f^(x))=E[(f^(x)f(x))2] 在直方图估计中,我们通常假设每个组内的样本是独立同分布的,并且每个样本落入某个特定组的概率是 f ( x ) Δ x f(x) \Delta x f(x)Δx ,其中 Δ x \Delta x Δx 是组距。在每个组内,样本数 ∼ B ( n , f ( x ) Δ x ) \sim B(n,f(x) \Delta x) B(n,f(x)Δx) ,方差是 n f ( x ) Δ x ( 1 − f ( x ) Δ x ) n f(x) \Delta x (1 - f(x) \Delta x) nf(x)Δx(1f(x)Δx)
    由于:
    f ^ ( x ) = 落入本组的样本数 n Δ x , E ( f ^ ( x ) ) = f ( x ) n Δ x n Δ x = f ( x ) \hat{f}(x)= \frac{落入本组的样本数}{n \Delta x},\quad E(\hat{f}(x))=\frac{f(x)n\Delta x}{n \Delta x}=f(x) f^(x)=nΔx落入本组的样本数,E(f^(x))=nΔxf(x)nΔx=f(x) Var ( f ^ ( x ) ) = n f ( x ) Δ x ( 1 − f ( x ) Δ x ) n 2 Δ x 2 = f ( x ) ( 1 − f ( x ) Δ x ) n Δ x , Δ x = b − a k \text{Var}(\hat{f}(x)) = \frac{n f(x) \Delta x (1 - f(x) \Delta x)}{n^2 {\Delta x}^2} = \frac{f(x) (1 - f(x) \Delta x)}{n \Delta x},\Delta x=\frac{b-a}{k} Var(f^(x))=n2Δx2nf(x)Δx(1f(x)Δx)=nΔxf(x)(1f(x)Δx),Δx=kba
    由于 f ^ ( x ) \hat{f}(x) f^(x) f ( x ) f(x) f(x)的无偏估计,所以: MSE ( f ^ ( x ) ) = Var ( f ^ ( x ) ) = f ( x ) [ k − f ( x ) ( b − a ) ] n ( b − a ) \text{MSE}(\hat{f}(x)) =\text{Var}(\hat{f}(x)) =\frac{f(x)[k-f(x)(b-a)]}{n(b-a)} MSE(f^(x))=Var(f^(x))=n(ba)f(x)[kf(x)(ba)]


  1. N N N个球一共有 L L L种颜色,第 k k k种颜色球的个数为 N k N_k Nk,有放回摸球 m m m

    (1)求摸到每种颜色球个数的协方差矩阵.

    (2) X 1 X_1 X1为摸到第一种颜色球的个数, X 1 ( n ) X_1(n) X1(n)表示在n次摸球中摸到第一种颜色球的个数,证明:
    P ( X 1 ( n + 1 ) ≥ i + 1 ) − P ( X 1 ( n ) ≥ i + 1 ) = N 1 N P ( X 1 = i ) P(X_1(n+1)\geq i+1)-P(X_1(n)\geq i+1)=\frac{N_1}{N}P(X_1=i) P(X1(n+1)i+1)P(X1(n)i+1)=NN1P(X1=i) (3) 证明: ∑ k = n − i n p k ( 1 − p ) n − k = ∫ 0 p x n − i − 1 ( 1 − x ) i d x ∫ 0 1 x n − i − 1 ( 1 − x ) i d x \sum_{k=n-i}^{n} p^k(1-p)^{n-k}=\frac{\int_{0}^{p}x^{n-i-1}(1-x)^i dx}{\int_{0}^{1}x^{n-i-1}(1-x)^i dx} k=ninpk(1p)nk=01xni1(1x)idx0pxni1(1x)idx

    Solution:

    (1) 定义随机变量 X k X_k Xk 为摸到第 k k k 种颜色球的个数,其中 k = 1 , 2 , … , L k = 1, 2, \ldots, L k=1,2,,L 。由于每次摸球是独立的,并且有放回,所以 X k X_k Xk 服从二项分布 B ( m , P k ) B(m, P_k) B(m,Pk) ,其中 P k = N k N P_k = \frac{N_k}{N} Pk=NNk 是摸到第 k k k 种颜色球的概率。
    E [ X k ] = m P k , Var ( X k ) = m P k ( 1 − P k ) E[X_k] = mP_k, \text{Var}(X_k) = mP_k(1-P_k) E[Xk]=mPk,Var(Xk)=mPk(1Pk) 对于 X k X_k Xk X j X_j Xj k ≠ j k \neq j k=j ),它们的协方差为:
    Cov ( X k , X j ) = E [ X k X j ] − E [ X k ] E [ X j ] \text{Cov}(X_k, X_j) = E[X_k X_j] - E[X_k]E[X_j] Cov(Xk,Xj)=E[XkXj]E[Xk]E[Xj] 由于每次摸球只能摸到一个球,所以 X k + X j ≤ m X_k + X_j \leq m Xk+Xjm 。因此, X k X_k Xk X j X_j Xj 是负相关的。
    E [ X k X j ] = ∑ i = 0 m ∑ j = 0 m − i i ⋅ j ⋅ P ( X k = i , X j = j ) E[X_k X_j] = \sum_{i=0}^{m} \sum_{j=0}^{m-i} i \cdot j \cdot P(X_k = i, X_j = j) E[XkXj]=i=0mj=0miijP(Xk=i,Xj=j) 由于 X k X_k Xk X j X_j Xj 是负相关的,所以:
    P ( X k = i , X j = j ) = P ( X k = i ) ⋅ P ( X j = j ∣ X k = i ) P(X_k = i, X_j = j) = P(X_k = i) \cdot P(X_j = j \mid X_k = i) P(Xk=i,Xj=j)=P(Xk=i)P(Xj=jXk=i) 给定 X k = i X_k = i Xk=i ,摸到第 j j j 种颜色球的概率变为 N j N − N k \frac{N_j}{N-N_k} NNkNj ,所以:
    P ( X j = j ∣ X k = i ) = ( m − i j ) ( N j N − N k ) j ( 1 − N j N − N k ) m − i − j P(X_j = j \mid X_k = i) = \binom{m-i}{j} \left( \frac{N_j}{N-N_k} \right)^j \left( 1 - \frac{N_j}{N-N_k} \right)^{m-i-j} P(Xj=jXk=i)=(jmi)(NNkNj)j(1NNkNj)mij E [ X k X j ] = ∑ i = 0 m i ⋅ ( m i ) p k i ( 1 − p k ) m − i ∑ j = 0 m − i j ⋅ ( m − i j ) ( N j N − N k ) j ( 1 − N j N − N k ) m − i − j E[X_k X_j] = \sum_{i=0}^{m} i \cdot \binom{m}{i} p_k^i (1-p_k)^{m-i} \sum_{j=0}^{m-i} j \cdot \binom{m-i}{j} \left( \frac{N_j}{N-N_k} \right)^j \left( 1 - \frac{N_j}{N-N_k} \right)^{m-i-j} E[XkXj]=i=0mi(im)pki(1pk)mij=0mij(jmi)(NNkNj)j(1NNkNj)mij 简化后得到:
    E [ X k X j ] = ∑ i = 0 m − 1 i ⋅ ( m i ) p k i ( 1 − p k ) m − i ( m − i ) ( N j N − N k ) = m ∑ i = 0 m − 1 i ⋅ ( m − 1 i ) p k i ( 1 − p k ) m − i ( N j N − N k ) = m ( m − 1 ) P k ( 1 − P k ) P j 1 − P k = m ( m − 1 ) P k P j \begin{aligned} E[X_k X_j] &= \sum_{i=0}^{m-1} i \cdot \binom{m}{i} p_k^i (1-p_k)^{m-i} (m-i) \left( \frac{N_j}{N-N_k} \right) \\ &=m\sum_{i=0}^{m-1} i \cdot \binom{m-1}{i} p_k^i (1-p_k)^{m-i} \left( \frac{N_j}{N-N_k} \right)\\ &=m(m-1)P_k(1-P_k)\frac{P_j}{1-P_k}\\ &=m(m-1)P_kP_j \end{aligned} E[XkXj]=i=0m1i(im)pki(1pk)mi(mi)(NNkNj)=mi=0m1i(im1)pki(1pk)mi(NNkNj)=m(m1)Pk(1Pk)1PkPj=m(m1)PkPj 所以:
    Cov ( X k , X j ) = m ( m − 1 ) P k P j − ( m P k ) ( m P j ) = − m P k P j \text{Cov}(X_k, X_j) = m(m-1)P_kP_j - (mP_k)(mP_j) = -mP_k P_j Cov(Xk,Xj)=m(m1)PkPj(mPk)(mPj)=mPkPj 因此,协方差矩阵 Σ \Sigma Σ 为:
    Σ k j = { m P k ( 1 − P k ) if  k = j − m P k P j if  k ≠ j \Sigma_{kj} = \begin{cases} mP_k(1-P_k) & \text{if } k = j \\ -mP_k P_j & \text{if } k \neq j \end{cases} Σkj={mPk(1Pk)mPkPjif k=jif k=j
    (2) 设 P 1 = N 1 N P_1=\frac{N_1}{N} P1=NN1表示摸到第一种颜色球的概率。
    P ( X 1 ( n ) ≥ i + 1 ) = ∑ k = i + 1 n ( n k ) P 1 k ⋅ ( 1 − P 1 ) n − k P(X_1(n)\geq i+1)= \sum_{k=i+1}^{n}\binom{n}{k} {P_1}^k \cdot({1-P_1})^{n-k} P(X1(n)i+1)=k=i+1n(kn)P1k(1P1)nk P ( X 1 ( n + 1 ) ≥ i + 1 ) = ∑ k = i + 1 n + 1 ( n + 1 k ) P 1 k ⋅ ( 1 − P 1 ) n + 1 − k P(X_1(n+1)\geq i+1)= \sum_{k=i+1}^{n+1}\binom{n+1}{k} {P_1}^k \cdot({1-P_1})^{n+1-k} P(X1(n+1)i+1)=k=i+1n+1(kn+1)P1k(1P1)n+1k P ( X 1 ( n + 1 ) ≥ i + 1 ) − P ( X 1 ( n ) ≥ i + 1 ) = ∑ k = i + 1 n + 1 ( n + 1 k ) P 1 k ( 1 − P 1 ) n + 1 − k − ∑ k = i + 1 n ( n k ) P 1 k ( 1 − P 1 ) n − k = ( n + 1 n + 1 ) P 1 n + 1 ( 1 − P 1 ) 0 + ∑ k = i + 1 n ( ( n + 1 k ) − ( n k ) ) P 1 k ( 1 − P 1 ) n + 1 − k = P 1 n + 1 + ∑ k = i + 1 n ( ( n + 1 k ) − ( n k ) ) P 1 k ( 1 − P 1 ) n + 1 − k \begin{aligned} P(X_1(n+1) \geq i+1) - P(X_1(n) \geq i+1) &= \sum_{k=i+1}^{n+1} \binom{n+1}{k} P_1^k (1-P_1)^{n+1-k} - \sum_{k=i+1}^{n} \binom{n}{k} P_1^k (1-P_1)^{n-k} \\ &= \binom{n+1}{n+1} P_1^{n+1} (1-P_1)^0 + \sum_{k=i+1}^{n} \left( \binom{n+1}{k} - \binom{n}{k} \right) P_1^k (1-P_1)^{n+1-k}\\ &= P_1^{n+1} + \sum_{k=i+1}^{n} \left( \binom{n+1}{k} - \binom{n}{k} \right) P_1^k (1-P_1)^{n+1-k} \end{aligned} P(X1(n+1)i+1)P(X1(n)i+1)=k=i+1n+1(kn+1)P1k(1P1)n+1kk=i+1n(kn)P1k(1P1)nk=(n+1n+1)P1n+1(1P1)0+k=i+1n((kn+1)(kn))P1k(1P1)n+1k=P1n+1+k=i+1n((kn+1)(kn))P1k(1P1)n+1k
    我们知道, ( n + 1 k ) = ( n k ) + ( n k − 1 ) \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} (kn+1)=(kn)+(k1n) ,因此: ( n + 1 k ) − ( n k ) = ( n k − 1 ) \binom{n+1}{k} - \binom{n}{k} = \binom{n}{k-1} (kn+1)(kn)=(k1n) 将这个性质代入上式,得到: P ( X 1 ( n + 1 ) ≥ i + 1 ) − P ( X 1 ( n ) ≥ i + 1 ) = P 1 n + 1 + ∑ k = i + 1 n ( n k − 1 ) P 1 k ( 1 − P 1 ) n + 1 − k = ∑ j = i n ( n j ) P 1 j + 1 ( 1 − P 1 ) n − j = P 1 ∑ j = i n ( n j ) P 1 j ( 1 − P 1 ) n − j = P 1 P ( X 1 ( n ) ≥ i ) \begin{aligned} P(X_1(n+1) \geq i+1) - P(X_1(n) \geq i+1) &= P_1^{n+1} + \sum_{k=i+1}^{n} \binom{n}{k-1} P_1^k (1-P_1)^{n+1-k}\\ &= \sum_{j=i}^{n} \binom{n}{j} P_1^{j+1} (1-P_1)^{n-j} \\ &= P_1 \sum_{j=i}^{n} \binom{n}{j} P_1^j (1-P_1)^{n-j} \\ &= P_1 P(X_1(n) \geq i) \end{aligned} P(X1(n+1)i+1)P(X1(n)i+1)=P1n+1+k=i+1n(k1n)P1k(1P1)n+1k=j=in(jn)P1j+1(1P1)nj=P1j=in(jn)P1j(1P1)nj=P1P(X1(n)i) (3) 令 : f ( p ) = ∑ k = n − i n p k ( 1 − p ) n − k , g ( p ) = ∫ 0 p x n − i + 1 ( 1 − x ) i d x ∫ 0 1 x n − i + 1 ( 1 − x ) i d x f ′ ( p ) = ∑ k = n − i n ( n k ) k p k − 1 ( 1 − p ) n − k − ∑ k = n − i n − 1 ( n k ) p k ( n − k ) ( 1 − p ) n − k − 1 = ∑ k = n − i n n ⋅ C n − 1 k − 1 ⋅ p k − 1 ⋅ ( 1 − p ) n − k − ∑ k = n − i n − 1 n ⋅ C n − 1 k ⋅ p k ⋅ ( 1 − p ) n − k − 1 = ∑ k = n − i − 1 n − 1 n ⋅ C n − 1 k ⋅ p k ⋅ ( 1 − p ) n − k − 1 − ∑ k = n − i n − 1 n ⋅ C n − 1 k ⋅ p k ⋅ ( 1 − p ) n − k − 1 = n ⋅ C n − 1 n − i − 1 ⋅ p n − i − 1 ⋅ ( 1 − p ) i = Γ ( n + 1 ) Γ ( n − i ) Γ ( i + 1 ) p n − i − 1 ( 1 − p ) i \begin{align*} 令: f(p)&=\sum_{k=n-i}^{n} p^{k}(1-p)^{n-k},g(p)=\frac{\int_{0}^{p} x^{n-i+1}(1-x)^{i}dx}{\int_{0}^{1} x^{n-i+1}(1-x)^{i}dx}\\ f'(p) &= \sum_{k=n-i}^{n} \binom{n}{k} k p^{k-1} (1-p)^{n-k} - \sum_{k=n-i}^{n-1} \binom{n}{k} p^k (n-k)(1-p)^{n-k-1}\\ &= \sum_{k=n-i}^{n} n \cdot C_{n-1}^{k-1} \cdot p^{k-1} \cdot (1-p)^{n-k} - \sum_{k=n-i}^{n-1} n \cdot C_{n-1}^{k} \cdot p^{k} \cdot (1-p)^{n-k-1} \\ &= \sum_{k=n-i-1}^{n-1} n \cdot C_{n-1}^{k} \cdot p^{k} \cdot (1-p)^{n-k-1} - \sum_{k=n-i}^{n-1} n \cdot C_{n-1}^{k} \cdot p^{k} \cdot (1-p)^{n-k-1} \\ &= n \cdot C_{n-1}^{n-i-1} \cdot p^{n-i-1} \cdot (1-p)^{i} \\ &= \frac{\Gamma(n+1)}{\Gamma(n-i)\Gamma(i+1)} p^{n-i-1} (1-p)^{i} \end{align*} :f(p)f(p)=k=ninpk(1p)nk,g(p)=01xni+1(1x)idx0pxni+1(1x)idx=k=nin(kn)kpk1(1p)nkk=nin1(kn)pk(nk)(1p)nk1=k=ninnCn1k1pk1(1p)nkk=nin1nCn1kpk(1p)nk1=k=ni1n1nCn1kpk(1p)nk1k=nin1nCn1kpk(1p)nk1=nCn1ni1pni1(1p)i=Γ(ni)Γ(i+1)Γ(n+1)pni1(1p)i g ′ ( p ) = d d p ∫ 0 p x n − i − 1 ( 1 − x ) i d x B e ( n − i , i + 1 ) = Γ ( n + 1 ) p n − i − 1 ( 1 − p ) i Γ ( n − i ) Γ ( i + 1 ) = f ′ ( p ) g'(p) =\frac{\frac{d}{dp} \int_{0}^{p} x^{n-i-1}(1-x)^{i}dx }{Be(n-i,i+1)}=\frac{\Gamma(n+1)p^{n-i-1}(1-p)^{i}}{\Gamma(n-i)\Gamma(i+1)}=f'(p) g(p)=Be(ni,i+1)dpd0pxni1(1x)idx=Γ(ni)Γ(i+1)Γ(n+1)pni1(1p)i=f(p) 下面验证当 p = 0 p = 0 p=0 p = 1 p = 1 p=1 时, f ( p ) f(p) f(p) g ( p ) g(p) g(p) 是否相等。 f ( 0 ) = 0 , g ( 0 ) = 0 f(0) =0, g(0) = 0 f(0)=0g(0)=0 f ( 1 ) = ∑ k = n − i n 1 k ( 1 − 1 ) n − k = 1 , g ( 1 ) = ∫ 0 1 x n − i − 1 ( 1 − x ) i d x ∫ 0 1 x n − i − 1 ( 1 − x ) i d x = 1 f(1) = \sum_{k=n-i}^{n} 1^{k}(1-1)^{n-k} = 1, g(1) = \frac{\int_{0}^{1} x^{n-i-1}(1-x)^{i}dx}{\int_{0}^{1} x^{n-i-1}(1-x)^{i}dx} = 1 f(1)=k=nin1k(11)nk=1,g(1)=01xni1(1x)idx01xni1(1x)idx=1 由于 f ′ ( p ) = g ′ ( p ) f'(p) = g'(p) f(p)=g(p) 并且 f ( p ) f(p) f(p) g ( p ) g(p) g(p) 在边界条件 p = 0 p = 0 p=0 p = 1 p = 1 p=1 下相等,得出结论 f ( p ) = g ( p ) f(p) = g(p) f(p)=g(p) 对所有 p p p 成立。


  1. U ( θ − c U(\theta-c U(θc θ + c ) \theta+c) θ+c)区间内取样本: X 1 , . . . , X n X_1,...,X_n X1,...,Xn

    (1)求 θ \theta θ的矩估计和极大似然估计.

    (2)证明 X ( 1 ) + X ( n ) 2 \frac{X_{(1)}+X_{(n)}}{2} 2X(1)+X(n) θ \theta θ的无偏估计.

    Solution:

    (1) X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1,X2,,Xn 来自均匀分布 U ( θ − c , θ + c ) U(\theta-c, \theta+c) U(θc,θ+c) , 期望为: θ − c + θ + c 2 = θ \frac{\theta-c+\theta+c}{2}=\theta 2θc+θ+c=θ 。样本均值 X ˉ \bar{X} Xˉ 是总体均值的矩估计: 矩估计 : θ ^ = X ˉ = 1 n ∑ i = 1 n X i 矩估计: \hat{\theta} = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i 矩估计:θ^=Xˉ=n1i=1nXi f ( x ; θ ) = 1 2 c , θ − c ≤ x ≤ θ + c f(x; \theta) = \frac{1}{2c} \quad , \quad \theta-c \leq x \leq \theta+c f(x;θ)=2c1,θcxθ+c L ( θ ) = ∏ i = 1 n f ( X i ; θ ) = ( 1 2 c ) n , θ − c ≤ X ( 1 ) ≤ X ( n ) ≤ θ + c L(\theta) = \prod_{i=1}^n f(X_i; \theta) = \left(\frac{1}{2c}\right)^n \quad, \quad \theta-c \leq X_{(1)} \leq X_{(n)} \leq \theta+c L(θ)=i=1nf(Xi;θ)=(2c1)n,θcX(1)X(n)θ+c θ − c ≤ X ( 1 ) \theta-c \leq X_{(1)} θcX(1) X ( n ) ≤ θ + c X_{(n)} \leq \theta+c X(n)θ+c 都成立时似然函数最大,即 X ( n ) − c ≤ θ ≤ X ( 1 ) + c X_{(n)}-c \leq\theta\leq X_{(1)}+c X(n)cθX(1)+c。因此,极大似然估计为: θ ^ M L E = { θ ∣ X ( n ) − c ≤ θ ≤ X ( 1 ) + c } \hat{\theta}_{MLE}=\{ \theta| X_{(n)}-c \leq\theta\leq X_{(1)}+c \} θ^MLE={θX(n)cθX(1)+c}
    (2)
    令 : Y i = X i − a b − a , Y i ∼ U ( 0 , 1 ) , Y ( k ) ∼ B e t a ( k , n − k + 1 ) 令: Y_i=\frac{X_i-a}{b-a},Y_i\sim U(0,1),Y_{(k)}\sim Beta(k,n-k+1) :Yi=baXia,YiU(0,1),Y(k)Beta(k,nk+1) 则 Y ( 1 ) ∼ B e t a ( 1 , n ) , E ( Y ( 1 ) ) = 1 n + 1 , E ( X ( 1 ) ) = b − a n + 1 + a 则Y_{(1)}\sim Beta(1,n),E(Y_{(1)})=\frac{1}{n+1},E(X_{(1)})=\frac{b-a}{n+1}+a Y(1)Beta(1,n),E(Y(1))=n+11,E(X(1))=n+1ba+a Y ( n ) ∼ B e t a ( n , 1 ) , E ( Y ( 1 ) ) = n n + 1 , E ( X ( n ) ) = n ( b − a ) n + 1 + a Y_{(n)}\sim Beta(n,1),E(Y_{(1)})=\frac{n}{n+1},E(X_{(n)})=\frac{n(b-a)}{n+1}+a Y(n)Beta(n,1),E(Y(1))=n+1n,E(X(n))=n+1n(ba)+a 其中 a = θ − c , b = θ + c a=\theta-c,b=\theta+c a=θc,b=θ+c, 所以对于均匀分布 U ( θ − c , θ + c ) U(\theta-c, \theta+c) U(θc,θ+c) ,最小值 X ( 1 ) X_{(1)} X(1) 和最大值 X ( n ) X_{(n)} X(n) 的期望值分别为:
    E [ X ( 1 ) ] = 2 c n + 1 + θ − c , E [ X ( n ) ] = 2 n c n + 1 + θ − c , E [ X ( 1 ) + X ( n ) 2 ] = θ E[X_{(1)}] = \frac{2c}{n+1}+\theta-c, E[X_{(n)}] =\frac{2nc}{n+1}+ \theta-c, E\left[\frac{X_{(1)}+X_{(n)}}{2}\right] = \theta E[X(1)]=n+12c+θc,E[X(n)]=n+12nc+θc,E[2X(1)+X(n)]=θ 所以 X ( 1 ) + X ( n ) 2 \frac{X_{(1)}+X_{(n)}}{2} 2X(1)+X(n) θ \theta θ 的无偏估计。


  1. X 1 , . . . , X n X_1,...,X_n X1,...,Xn服从正态分布 N ( μ , σ 2 ) N(\mu,{\sigma}^2) N(μσ2) H 0 : μ = μ 0 , H 1 : μ > μ 0 H_0:\mu={\mu}_0,\quad H_1:\mu>{\mu}_0 H0:μ=μ0,H1:μ>μ0(1)介绍假设检验原理.

    (2) 分别求在 σ 2 {\sigma}^2 σ2已知和未知下的 p p p值表达式和其分布.

    Solution:

    (1) 假设检验是统计学中的一种方法,用于判断一个假设是否成立, 假设检验的步骤如下:

    1.提出假设: H 0 : μ = μ 0 , H 1 : μ > μ 0 H_0:\mu={\mu}_0,\quad H_1:\mu>{\mu}_0 H0:μ=μ0,H1:μ>μ0

    2.选择检验统计量:根据数据的类型和分布选择合适的检验统计量,当 σ \sigma σ已知的时候可以用单样本的 u u u检验,当 σ \sigma σ未知时用 t t t检验。

    3.确定显著性水平:选择一个显著性水平 α \alpha α ,通常为 0.05 或 0.01。

    4.计算检验统计量的值:根据样本数据计算检验统计量的值。当 σ = σ 0 \sigma={\sigma}_0 σ=σ0已知时统计量为 Z = n ( x ˉ − μ 0 ) σ Z=\frac{\sqrt{n}(\bar{x}-{\mu}_0)}{\sigma} Z=σn (xˉμ0),当 σ \sigma σ未知时统计量为: T = n ( x ˉ − μ 0 ) s T=\frac{\sqrt{n}(\bar{x}-{\mu}_0)}{s} T=sn (xˉμ0)

    5.根据拒绝域做出决策:当 σ = σ 0 \sigma={\sigma}_0 σ=σ0已知时拒绝域为 W = { Z > z 1 − α } W=\{Z>z_{1-\alpha}\} W={Z>z1α},当 σ \sigma σ未知时拒绝域为: W = { T > t 1 − α ( n − 1 ) } W=\{T>t_{1-\alpha}(n-1)\} W={T>t1α(n1)}。如果统计量落在拒绝域中 ,则拒绝零假设 ,接受备择假设 ;否则,不拒绝零假设 。

    (2)(i) 在 σ 2 \sigma^2 σ2 已知时, 我们会选择检验统计量 u ( X ) = n X ‾ − μ 0 σ ∼ N ( 0 , 1 ) u(\boldsymbol{X}) ={\sqrt{n}} \frac{\overline{X}-\mu_0}{\sigma} \sim N(0,1) u(X)=n σXμ0N(0,1), 当 u u u 较大时, 或 X ‾ \overline{X} X μ 0 \mu_0 μ0 大很多时, 我们会拒绝原假设, p p p-值的含义是当原假设成立时发生比当前样本还要极端的可能性, 它显然是样本的函数. 如果已收集到样本 x 0 \boldsymbol{x}_0 x0, 对应有统计量 u 0 = u ( x 0 ) u_0 = u(\boldsymbol{x}_0) u0=u(x0), 那么 p p p-值是:
    p ( x 0 ) = P ( Z ≥ u 0 ) = 1 − Φ ( u 0 ) = 1 − Φ ( u ( x 0 ) ) . p(\boldsymbol{x}_0) = P\left(Z \ge u_0 \right) = 1-\Phi(u_0) = 1- \Phi\left( u(\boldsymbol{x}_0) \right). p(x0)=P(Zu0)=1Φ(u0)=1Φ(u(x0)).
    此时, 如果 x 0 \boldsymbol{x}_0 x0 是已知样本, 那么 p ( x 0 ) p(\boldsymbol{x}_0) p(x0) 也是已知量, 如果考虑样本是随机变量 X \boldsymbol{X} X, 那 p ( X ) p(\boldsymbol{X}) p(X) 也是随机变量, 即:
    p ( X ) = 1 − Φ ( u ( X ) ) , p(\boldsymbol{X}) = 1- \Phi\left( u(\boldsymbol{X}) \right), p(X)=1Φ(u(X)),
    其中由于 u ( X ) ∼ N ( 0 , 1 ) u(\boldsymbol{X}) \sim N(0,1) u(X)N(0,1), 因此 Φ ( u ( X ) ) \Phi(u(\boldsymbol{X})) Φ(u(X)) 是分布函数作用在自身, Φ ( u ( X ) ) ∼ U ( 0 , 1 ) \Phi(u(\boldsymbol{X})) \sim U(0,1) Φ(u(X))U(0,1), 而 1 − U ( 0 , 1 ) 1-U(0,1) 1U(0,1) 仍然服从 U ( 0 , 1 ) U(0,1) U(0,1), 因此:
    p ( X ) = 1 − Φ ( u ( X ) ) ∼ U ( 0 , 1 ) . p(\boldsymbol{X}) = 1- \Phi\left( u(\boldsymbol{X}) \right) \sim U(0,1). p(X)=1Φ(u(X))U(0,1).(ii) 在 σ 2 \sigma^2 σ2 未知时, 我们会选择检验统计量 u ( X ) = n X ‾ − μ 0 s ∼ t ( n − 1 ) u(\boldsymbol{X}) ={\sqrt{n}} \frac{\overline{X}-\mu_0}{s} \sim t(n-1) u(X)=n sXμ0t(n1), 当 u u u 较大时, 或 X ‾ \overline{X} X μ 0 \mu_0 μ0 大很多时, 我们会拒绝原假设, 如果已收集到样本 x 0 \boldsymbol{x}_0 x0, 对应有统计量 u 0 = u ( x 0 ) u_0 = u(\boldsymbol{x}_0) u0=u(x0), 那么 p p p-值是:
    p ( x 0 ) = P ( T ≥ u 0 ) = 1 − F t , n − 1 ( u ( x 0 ) ) . p(\boldsymbol{x}_0) = P\left(T \ge u_0 \right) = 1- F_{t,n-1}\left( u(\boldsymbol{x}_0) \right). p(x0)=P(Tu0)=1Ft,n1(u(x0)).
    其中 F t , n − 1 F_{t,n-1} Ft,n1 t ( n − 1 ) t(n-1) t(n1) 的分布函数. 此时, 如果 x 0 \boldsymbol{x}_0 x0 是已知样本, 那么 p ( x 0 ) p(\boldsymbol{x}_0) p(x0) 也是已知量, 如果考虑样本是随机变量 X \boldsymbol{X} X, 那 p ( X ) p(\boldsymbol{X}) p(X) 也是随机变量, 即:
    p ( X ) = 1 − F t , n − 1 ( u ( X ) ) , p(\boldsymbol{X}) = 1- F_{t,n-1}\left( u(\boldsymbol{X}) \right), p(X)=1Ft,n1(u(X)),
    其中由于 u ( X ) ∼ t ( n − 1 ) u(\boldsymbol{X}) \sim t(n-1) u(X)t(n1), 因此 F t , n − 1 ( u ( X ) ) F_{t,n-1}(u(\boldsymbol{X})) Ft,n1(u(X)) 是分布函数作用在自身, F t , n − 1 ( u ( X ) ) ∼ U ( 0 , 1 ) F_{t,n-1}(u(\boldsymbol{X})) \sim U(0,1) Ft,n1(u(X))U(0,1), 而 1 − U ( 0 , 1 ) 1-U(0,1) 1U(0,1) 仍然服从 U ( 0 , 1 ) U(0,1) U(0,1), 因此仍然有:
    p ( X ) = 1 − F t , n − 1 ( u ( X ) ) ∼ U ( 0 , 1 ) . p(\boldsymbol{X}) = 1- F_{t,n-1}\left( u(\boldsymbol{X}) \right) \sim U(0,1). p(X)=1Ft,n1(u(X))U(0,1).


  1. 二元线性回归模型, y i = α + β x i + λ z i + ϵ , ϵ ∼ N ( 0 , σ 2 ) y_i=\alpha+\beta x_i+\lambda z_i+\epsilon,\quad \epsilon \sim N(0,{\sigma}^2) yiα+βxi+λzi+ϵ,ϵN(0,σ2)

    (1)求 β \beta β的极大似然估计,数学期望,方差.

    (2)如果 y y y 写成 x x x 的一元回归模型,求 β \beta β最小二乘估计,判断其是否是无偏估计,并比较两种情况下 β \beta β的方差.

    Solution:

    (1) L = ∏ i = 1 n 1 2 π σ 2 exp ⁡ ( − ( y i − α − β x i − λ z i ) 2 2 σ 2 ) L = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \alpha - \beta x_i - \lambda z_i)^2}{2\sigma^2}\right) L=i=1n2πσ2 1exp(2σ2(yiαβxiλzi)2) ln ⁡ L = − n 2 log ⁡ ( 2 π ) − n 2 log ⁡ ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( y i − α − β x i − λ z i ) 2 \ln L = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \alpha - \beta x_i - \lambda z_i)^2 lnL=2nlog(2π)2nlog(σ2)2σ21i=1n(yiαβxiλzi)2 { ∂ ln ⁡ L ∂ α = 0 → ∑ i = 1 n ( y i − α − β x i − λ z i ) = 0 ∂ ln ⁡ L ∂ β = 0 → ∑ i = 1 n x i ( y i − α − β x i − λ z i ) = 0 ∂ ln ⁡ L ∂ λ = 0 → ∑ i = 1 n z i ( y i − α − β x i − λ z i ) = 0 \left\{ \begin{array}{ll} \frac{\partial \ln L}{\partial \alpha} &=0 \rightarrow \sum_{i=1}^n (y_i - \alpha - \beta x_i - \lambda z_i) = 0\\\\ \frac{\partial \ln L}{\partial \beta} &=0\rightarrow \sum_{i=1}^n x_i (y_i - \alpha - \beta x_i - \lambda z_i) = 0 \\\\ \frac{\partial \ln L}{\partial \lambda} &=0\rightarrow \sum_{i=1}^n z_i (y_i - \alpha - \beta x_i - \lambda z_i) = 0 \end{array} \right. αlnLβlnLλlnL=0i=1n(yiαβxiλzi)=0=0i=1nxi(yiαβxiλzi)=0=0i=1nzi(yiαβxiλzi)=0 即: { α ^ = y ˉ − β ^ x ˉ − λ ^ z ˉ , ( 1 ) α ^ ⋅ n x ˉ + β ^ ∑ i = 1 n x i 2 + λ ^ ∑ i = 1 n x i z i = ∑ i = 1 n x i y i , ( 2 ) α ^ ⋅ n z ˉ + β ^ ∑ i = 1 n x i z i + λ ^ ∑ i = 1 n z i 2 = ∑ i = 1 n y i z i , ( 3 ) \left\{ \begin{array}{l} \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} - \hat{\lambda}\bar{z},\quad (1)\\\\ \hat{\alpha} \cdot n\bar{x} + \hat{\beta}{\sum}_{i=1}^{n} x_{i}^{2} + \hat{\lambda}{\sum}_{i=1}^{n} x_{i}z_{i} ={\sum}_{i=1}^{n}x_{i}y_{i},\quad (2) \\\\ \hat{\alpha} \cdot n\bar{z} + \hat{\beta}{\sum}_{i=1}^{n} x_{i}z_{i} + \hat{\lambda}{\sum}_{i=1}^{n} z_{i}^{2} = {\sum}_{i=1}^{n} y_{i}z_{i},\quad (3) \end{array} \right. α^=yˉβ^xˉλ^zˉ,(1)α^nxˉ+β^i=1nxi2+λ^i=1nxizi=i=1nxiyi,(2)α^nzˉ+β^i=1nxizi+λ^i=1nzi2=i=1nyizi,(3) 整理方程 (1)(2) 得到: β ^ l x x + λ ^ l x z = l x y \hat{\beta}l_{xx} + \hat{\lambda}l_{xz} = l_{xy} β^lxx+λ^lxz=lxy , 同理由方程(1) (3) 得到: β ^ l x z + λ ^ l z z = l z y \hat{\beta}l_{xz} + \hat{\lambda}l_{zz} = l_{zy} β^lxz+λ^lzz=lzy ,于是: { l x x ⋅ β ^ + l x z ⋅ λ ^ = l x y l x z ⋅ β ^ + l z z ⋅ λ ^ = l z y \begin{cases} l_{xx} \cdot \hat{\beta} + l_{xz} \cdot \hat{\lambda} = l_{xy} \\ l_{xz} \cdot \hat{\beta} + l_{zz} \cdot \hat{\lambda} = l_{zy} \end{cases} {lxxβ^+lxzλ^=lxylxzβ^+lzzλ^=lzy 根据克拉默法则解得: β M L E ^ = l x y l z z − l x z l z y l x x l z z − l x z 2 \hat{{\beta}_{MLE}} = \frac{l_{xy}l_{zz} - l_{xz}l_{zy}}{l_{xx}l_{zz} - l_{xz}^2} βMLE^=lxxlzzlxz2lxylzzlxzlzy
    代入 α ^ = y ˉ − β ^ x ˉ − λ ^ z ˉ \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} - \hat{\lambda}\bar{z} α^=yˉβ^xˉλ^zˉ 得到 α ^ \hat{\alpha} α^ 的值。 E ( β M L E ) = l z z ∑ i = 1 n ( x i − x ˉ ) E ( y i − y ˉ ) − l x z ∑ i = 1 n ( z i − z ˉ ) E ( y i − y ˉ ) l x x l z z − l x z 2 = β ( l x x l z z − l x z 2 ) l x x l z z − l x z 2 = β V a r ( β M L E ) = l z z 2 V a r ( l x y ) + l x z 2 V a r ( l z y ) − 2 l x z l z z C o v ( l x y , l z y ) ( l x x l z z − l x z 2 ) 2 = l z z 2 l x x σ 2 + l x z 2 l z z σ 2 − 2 l x z l z z l x z σ 2 ( l x x l z z − l x z 2 ) 2 = l z z σ 2 l x x l z z − l x z 2 \begin{aligned} E({\beta}_{MLE}) &= \frac{l_{zz} \sum_{i=1}^{n} (x_i - \bar{x})E(y_i - \bar{y})-l_{xz}\sum_{i=1}^{n} (z_i - \bar{z})E(y_i - \bar{y})}{l_{xx}l_{zz} - l_{xz}^2} \\ &=\frac{\beta(l_{xx}l_{zz} - l_{xz}^2)}{l_{xx}l_{zz} - l_{xz}^2}\\ &= \beta\\ Var({\beta}_{MLE}) &= \frac{{l_{zz}}^2 Var(l_{xy})+{l_{xz}}^2 Var(l_{zy})-2l_{xz}l_{zz}Cov(l_{xy},l_{zy})} {(l_{xx}l_{zz} - l_{xz}^2)^2} \\ &=\frac{{l_{zz}}^2 l_{xx}{\sigma}^2+{l_{xz}}^2 l_{zz}{\sigma}^2-2l_{xz}l_{zz}l_{xz}{\sigma}^2} {(l_{xx}l_{zz} - l_{xz}^2)^2} \\ &=\frac{l_{zz}{\sigma}^2}{l_{xx}l_{zz} - l_{xz}^2} \end{aligned} E(βMLE)Var(βMLE)=lxxlzzlxz2lzzi=1n(xixˉ)E(yiyˉ)lxzi=1n(zizˉ)E(yiyˉ)=lxxlzzlxz2β(lxxlzzlxz2)=β=(lxxlzzlxz2)2lzz2Var(lxy)+lxz2Var(lzy)2lxzlzzCov(lxy,lzy)=(lxxlzzlxz2)2lzz2lxxσ2+lxz2lzzσ22lxzlzzlxzσ2=lxxlzzlxz2lzzσ2( 克拉默法则是一种通过行列式求解线性方程组的方法。对于线性方程组: { a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 \begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases} {a1x+b1y=c1a2x+b2y=c2 其解为: x = D x D , y = D y D x = \frac{D_x}{D}, \quad y = \frac{D_y}{D} x=DDx,y=DDy
    其中 D D D 是系数矩阵的行列式, D x D_x Dx D y D_y Dy 分别是通过将 D D D 的第一列和第二列替换为常数项 c 1 , c 2 c_1, c_2 c1,c2 得到的行列式。)

    (2)此时: y i = α + β x i + ϵ , ϵ ∼ N ( 0 , σ 2 ) , S = ∑ i = 1 n ( Y i − Y ^ i ) 2 = ∑ i = 1 n ( Y i − ( α + β X i ) ) 2 y_i=\alpha+\beta x_i+\epsilon,\quad \epsilon \sim N(0,{\sigma}^2), S = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^n (Y_i - (\alpha + \beta X_i))^2 yiα+βxi+ϵ,ϵN(0,σ2)S=i=1n(YiY^i)2=i=1n(Yi(α+βXi))2 { ∂ S ∂ α = − 2 ∑ i = 1 n ( Y i − α − β X i ) = − 2 ( ∑ i = 1 n Y i − n α − β ∑ i = 1 n X i ) = 0 , α = Y ˉ − β X ˉ ∂ S ∂ β = − 2 ∑ i = 1 n ( Y i − α − β X i ) X i = − 2 ( ∑ i = 1 n Y i X i − α ∑ i = 1 n X i − β ∑ i = 1 n X i 2 ) = 0 , \left\{ \begin{array}{l} \frac{\partial S}{\partial \alpha} = -2 \sum_{i=1}^n (Y_i - \alpha - \beta X_i) = -2 \left( \sum_{i=1}^n Y_i - n\alpha- \beta \sum_{i=1}^n X_i \right) =0,\quad \alpha = \bar{Y} - \beta \bar{X} \\\\ \frac{\partial S}{\partial \beta} = -2 \sum_{i=1}^n (Y_i - \alpha - \beta X_i)X_i = -2 \left( \sum_{i=1}^n Y_i X_i - \alpha \sum_{i=1}^n X_i - \beta \sum_{i=1}^n X_i^2 \right) =0,\quad \end{array} \right. αS=2i=1n(YiαβXi)=2(i=1nYinαβi=1nXi)=0,α=YˉβXˉβS=2i=1n(YiαβXi)Xi=2(i=1nYiXiαi=1nXiβi=1nXi2)=0, α = Y ˉ − β X ˉ \alpha = \bar{Y} - \beta \bar{X} α=YˉβXˉ 代入方程,得到: ∑ i = 1 n Y i X i − ( Y ˉ − β X ˉ ) ∑ i = 1 n X i − β ∑ i = 1 n X i 2 = 0 , β ^ = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 \sum_{i=1}^n Y_i X_i - (\bar{Y} - \beta \bar{X}) \sum_{i=1}^n X_i - \beta \sum_{i=1}^n X_i^2 = 0 ,\quad \hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} i=1nYiXi(YˉβXˉ)i=1nXiβi=1nXi2=0,β^=i=1n(XiXˉ)2i=1n(XiXˉ)(YiYˉ) E ( β ^ ) = ∑ i = 1 n ( X i − X ˉ ) E ( Y i − Y ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 = ∑ i = 1 n ( X i − X ˉ ) ( α + β X i − α − β X ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 = ∑ i = 1 n ( X i − X ˉ ) 2 β ∑ i = 1 n ( X i − X ˉ ) 2 = β \begin{aligned} E(\hat{\beta}) &= \frac{\sum_{i=1}^{n} (X_i - \bar{X})E(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\ &= \frac{\sum_{i=1}^{n} (X_i - \bar{X})(\alpha+ \beta X_i -\alpha - \beta \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\ &= \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 \beta}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\ &= \beta \end{aligned} E(β^)=i=1n(XiXˉ)2i=1n(XiXˉ)E(YiYˉ)=i=1n(XiXˉ)2i=1n(XiXˉ)(α+βXiαβXˉ)=i=1n(XiXˉ)2i=1n(XiXˉ)2β=β 故其是无偏估计。 Var ( β ^ ) = σ 2 l x x ≤ Var ( β ^ M L E ) \text{Var}(\hat{\beta})= \frac{\sigma^2}{l_{xx}} \leq \text{Var}(\hat{\beta}_{MLE}) Var(β^)=lxxσ2Var(β^MLE)


  1. 白噪声: ϵ t ∼ N ( 0 , σ 2 ) {\epsilon}_t \sim N(0,{\sigma}^2) ϵtN(0,σ2), X t = 0.5 X t − 1 + ϵ t − 1.1 ϵ t − 1 + 0.3 ϵ t − 2 X_t=0.5X_{t-1}+{\epsilon}_t-1.1{\epsilon}_{t-1}+0.3{\epsilon}_{t-2} Xt=0.5Xt1+ϵt1.1ϵt1+0.3ϵt2

    (1)化简模型.

    (2)化简模型是否宽平稳?求其自相关系数。

    Solution: (1) 该模型是 ARMA(1,2) 模型, 其简化形式是
    ( 1 − 0.5 B ) X t = ( 1 − 1.1 B + 0.3 B 2 ) ϵ t , \left( 1-0.5B \right) X_t=\left( 1-1.1B+0.3B^2 \right) \epsilon _t, (10.5B)Xt=(11.1B+0.3B2)ϵt,
    其中 B B B 是滞后算子. 我们也可以定义滞后多项式
    Φ ( z ) = 1 − 0.5 z , Θ ( z ) = 1 − 1.1 z + 0.3 z 2 , \Phi \left( z \right) =1-0.5z,\quad \Theta \left( z \right) =1-1.1z+0.3z^2, Φ(z)=10.5z,Θ(z)=11.1z+0.3z2,
    此时模型可写作 Φ ( B ) X t = Θ ( B ) ϵ t \Phi(B)X_t = \Theta(B) \epsilon_t Φ(B)Xt=Θ(B)ϵt.

    (2) (i) ARMA 模型的宽平稳条件是其 AR 部分是宽平稳的, 即 Φ ( z ) = 0 \Phi(z)=0 Φ(z)=0 的根都在单位圆外, 此处其特征根 z 0 = 2 z_0=2 z0=2 显然在单位圆外, 因此模型宽平稳.

    (ii) 为求其自相关系数, 我们需求解其传递形式 X t = ∑ j = 0 ∞ G j ϵ t − j X_t = \sum_{j=0}^{\infty} G_j \epsilon_{t-j} Xt=j=0Gjϵtj, 其中 { G j } \{G_j\} {Gj} 是 Green 函数, 且 G 0 = 1 G_0=1 G0=1. 我们可以递推求解, 假设 我们需求解其传递形式 X t = ∑ j = 0 ∞ G j ϵ t − j X_t = \sum_{j=0}^{\infty} G_j \epsilon_{t-j} Xt=j=0Gjϵtj, 其中 { G j } \{G_j\} {Gj} 是 Green 函数, 且 G 0 = 1 G_0=1 G0=1. 我们可以递推求解, 假设:
    X t = ( 1 + G 1 B + G 2 B 2 + G 3 B 3 + ⋯   ) ϵ t , X_t=\left( 1+G_1B+G_2B^2+G_3B^3+\cdots \right) \epsilon _t, Xt=(1+G1B+G2B2+G3B3+)ϵt,
    又根据 Φ ( B ) X t = Θ ( B ) ϵ t \Phi(B)X_t = \Theta(B) \epsilon_t Φ(B)Xt=Θ(B)ϵt, 我们有:
    ( 1 − 0.5 B ) ( 1 + G 1 B + G 2 B 2 + G 3 B 3 + ⋯   ) = 1 − 1.1 B + 0.3 B 2 . (1-0.5B)\left( 1+G_1B+G_2B^2+G_3B^3+\cdots \right) = 1 - 1.1 B + 0.3 B^2. (10.5B)(1+G1B+G2B2+G3B3+)=11.1B+0.3B2.
    将左侧对应打开有:
    1 + ( − 0.5 + G 1 ) B + ( − 0.5 G 1 + G 2 ) B 2 + ( − 0.5 G 2 + G 3 ) B 3 + ⋯ = 1 − 1.1 B + 0.3 B 2 , 1+\left( -0.5+G_1 \right) B+\left( -0.5G_1+G_2 \right) B^2+\left( -0.5G_2+G_3 \right) B^3+\cdots =1-1.1B+0.3B^2, 1+(0.5+G1)B+(0.5G1+G2)B2+(0.5G2+G3)B3+=11.1B+0.3B2,
    这说明:
    { − 0.5 + G 1 = − 1.1 , − 0.5 G 1 + G 2 = 0.3 , − 0.5 G k + G k + 1 = 0 , k ≥ 2 , \begin{cases} -0.5+G_1=-1.1,\\ -0.5G_1+G_2=0.3,\\ -0.5G_k+G_{k+1}=0,\quad k\ge 2,\\ \end{cases} 0.5+G1=1.1,0.5G1+G2=0.3,0.5Gk+Gk+1=0,k2,
    我们解得: G 1 = − 0.6 , G 2 = 0 , G k = 0 ,   k ≥ 3 , G_1=-0.6,\quad G_2=0,\quad G_k=0,\,k\ge 3, G1=0.6,G2=0,Gk=0,k3,
    因此模型恰化为有限阶 X t = ϵ t − 0.6 ϵ t − 1 X_t = \epsilon_t - 0.6 \epsilon_{t-1} Xt=ϵt0.6ϵt1, 这一点也可以说明模型平稳,我们紧接着计算其自协方差函数 γ k \gamma_k γk, 显然只有 γ 0 \gamma_0 γ0, γ 1 \gamma_1 γ1 非零:
    γ 0 = V a r ( X t ) = 1.36 σ 2 , γ 1 = E ( X t X t + 1 ) = − 0.6 σ 2 , γ k = 0 ,    k ≥ 2. \gamma_0 = Var(X_t) = 1.36 \sigma^2, \quad \gamma_1 = E(X_t X_{t+1})= -0.6 \sigma^2, \quad \gamma_k =0,\,\, k\ge 2. γ0=Var(Xt)=1.36σ2,γ1=E(XtXt+1)=0.6σ2,γk=0,k2.
    因此结论是:
    ρ 0 = 1 , ρ 1 = − 15 34 , ρ 2 = ρ 3 = ⋯ = 0. \rho_0 = 1,\quad \rho_1 = - \frac{15}{34},\quad \rho_2 = \rho_3 = \cdots = 0. ρ0=1,ρ1=3415,ρ2=ρ3==0.

智慧消防安全与应急管理是现代城市安全管理的重要组成部分,随着城市化进程的加速,传统消防安全管理面临着诸多挑战,如消防安全责任制度落实不到位、消防设施日常管理不足、消防警力不足等。这些问不仅制约了消防安全管理水平的提升,也给城市的安全运行带来了潜在风险。然而,物联网和智慧城市技术的快速发展为解决这些问提供了新的思路和方法。智慧消防作为物联网和智慧城市技术结合的创新产物,正在成为社会消防安全管理的新趋势。 智慧消防的核心在于通过技术创新实现消防安全管理的智能化和自动化。其主要应用包括物联网消防安全监管平台、城市消防远程监控系统、智慧消防平台等,这些系统利用先进的技术手段,如GPS、GSM、GIS等,实现了对消防设施的实时监控、智能巡检和精准定位。例如,单兵定位方案通过信标点定位和微惯导加蓝牙辅助定位技术,能够精确掌握消防人员的位置信息,从而提高救援效率和安全性。智慧消防不仅提升了消防设施的管理质量,还优化了社会消防安全管理资源的配置,降低了管理成本。此外,智慧消防的应用还弥补了传统消防安全管理中数据处理方式落后、值班制度执行不彻底等问,赋予了建筑消防设施智能化、自动化的能力。 尽管智慧消防技术在社会消防安全管理工作中的应用已经展现出巨大的潜力和优势,但目前仍处于实践探索阶段。相关职能部门和研究企业需要加大研究开发力度,进一步完善系统的功能与实效性。智慧消防的发展既面临风险,也充满机遇。当前,社会消防安全管理工作中仍存在制度执行不彻底、消防设施日常维护不到位等问,而智慧消防理念与技术的应用可以有效弥补这些弊端,提高消防安全管理的自动化与智能化水平。随着智慧城市理念的不断发展和实践,智慧消防将成为推动社会消防安全管理工作与城市化进程同步发展的关键力量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值