北师大432统计学-2025年考研真题解答
-
从区间 ( a , b ) (a,b) (a,b)取 n n n个样本,给定组数 k k k
(1)介绍绘制频率直方图的步骤.
(2) f ( x ) f(x) f(x)为样本密度函数,任给 x , f ^ ( x ) x,\hat{f}(x) x,f^(x)是 f ( x ) f(x) f(x)的估计值,求 f ^ ( x ) \hat{f}(x) f^(x)的均方误差.
Solution:
(1)1.确定组数和组距:组数: k k k,组距: b − a k \frac{b-a}{k} kb−a。
\quad\quad 2.计算频数:对于每个组,统计落在该组内的样本数量,即为该组的频数。
\quad\quad 3.计算频率:将每个组的频数除以总样本数 n n n ,得到该组的频率。
\quad\quad 4.绘制直方图:在坐标系中,横轴表示样本值,纵轴表示频率。对于每个组,绘制一个矩形,其宽度为组距,高度为该组的频率。这些矩形相邻排列,形成直方图。
(2) MSE ( f ^ ( x ) ) = E [ ( f ^ ( x ) − f ( x ) ) 2 ] \text{MSE}(\hat{f}(x)) = E[(\hat{f}(x) - f(x))^2] MSE(f^(x))=E[(f^(x)−f(x))2] 在直方图估计中,我们通常假设每个组内的样本是独立同分布的,并且每个样本落入某个特定组的概率是 f ( x ) Δ x f(x) \Delta x f(x)Δx ,其中 Δ x \Delta x Δx 是组距。在每个组内,样本数 ∼ B ( n , f ( x ) Δ x ) \sim B(n,f(x) \Delta x) ∼B(n,f(x)Δx) ,方差是 n f ( x ) Δ x ( 1 − f ( x ) Δ x ) n f(x) \Delta x (1 - f(x) \Delta x) nf(x)Δx(1−f(x)Δx) 。
由于:
f ^ ( x ) = 落入本组的样本数 n Δ x , E ( f ^ ( x ) ) = f ( x ) n Δ x n Δ x = f ( x ) \hat{f}(x)= \frac{落入本组的样本数}{n \Delta x},\quad E(\hat{f}(x))=\frac{f(x)n\Delta x}{n \Delta x}=f(x) f^(x)=nΔx落入本组的样本数,E(f^(x))=nΔxf(x)nΔx=f(x) Var ( f ^ ( x ) ) = n f ( x ) Δ x ( 1 − f ( x ) Δ x ) n 2 Δ x 2 = f ( x ) ( 1 − f ( x ) Δ x ) n Δ x , Δ x = b − a k \text{Var}(\hat{f}(x)) = \frac{n f(x) \Delta x (1 - f(x) \Delta x)}{n^2 {\Delta x}^2} = \frac{f(x) (1 - f(x) \Delta x)}{n \Delta x},\Delta x=\frac{b-a}{k} Var(f^(x))=n2Δx2nf(x)Δx(1−f(x)Δx)=nΔxf(x)(1−f(x)Δx),Δx=kb−a
由于 f ^ ( x ) \hat{f}(x) f^(x)为 f ( x ) f(x) f(x)的无偏估计,所以: MSE ( f ^ ( x ) ) = Var ( f ^ ( x ) ) = f ( x ) [ k − f ( x ) ( b − a ) ] n ( b − a ) \text{MSE}(\hat{f}(x)) =\text{Var}(\hat{f}(x)) =\frac{f(x)[k-f(x)(b-a)]}{n(b-a)} MSE(f^(x))=Var(f^(x))=n(b−a)f(x)[k−f(x)(b−a)]
-
N N N个球一共有 L L L种颜色,第 k k k种颜色球的个数为 N k N_k Nk,有放回摸球 m m m次
(1)求摸到每种颜色球个数的协方差矩阵.
(2) X 1 X_1 X1为摸到第一种颜色球的个数, X 1 ( n ) X_1(n) X1(n)表示在n次摸球中摸到第一种颜色球的个数,证明:
P ( X 1 ( n + 1 ) ≥ i + 1 ) − P ( X 1 ( n ) ≥ i + 1 ) = N 1 N P ( X 1 = i ) P(X_1(n+1)\geq i+1)-P(X_1(n)\geq i+1)=\frac{N_1}{N}P(X_1=i) P(X1(n+1)≥i+1)−P(X1(n)≥i+1)=NN1P(X1=i) (3) 证明: ∑ k = n − i n p k ( 1 − p ) n − k = ∫ 0 p x n − i − 1 ( 1 − x ) i d x ∫ 0 1 x n − i − 1 ( 1 − x ) i d x \sum_{k=n-i}^{n} p^k(1-p)^{n-k}=\frac{\int_{0}^{p}x^{n-i-1}(1-x)^i dx}{\int_{0}^{1}x^{n-i-1}(1-x)^i dx} k=n−i∑npk(1−p)n−k=∫01xn−i−1(1−x)idx∫0pxn−i−1(1−x)idx
Solution:
(1) 定义随机变量 X k X_k Xk 为摸到第 k k k 种颜色球的个数,其中 k = 1 , 2 , … , L k = 1, 2, \ldots, L k=1,2,…,L 。由于每次摸球是独立的,并且有放回,所以 X k X_k Xk 服从二项分布 B ( m , P k ) B(m, P_k) B(m,Pk) ,其中 P k = N k N P_k = \frac{N_k}{N} Pk=NNk 是摸到第 k k k 种颜色球的概率。
E [ X k ] = m P k , Var ( X k ) = m P k ( 1 − P k ) E[X_k] = mP_k, \text{Var}(X_k) = mP_k(1-P_k) E[Xk]=mPk,Var(Xk)=mPk(1−Pk) 对于 X k X_k Xk 和 X j X_j Xj ( k ≠ j k \neq j k=j ),它们的协方差为:
Cov ( X k , X j ) = E [ X k X j ] − E [ X k ] E [ X j ] \text{Cov}(X_k, X_j) = E[X_k X_j] - E[X_k]E[X_j] Cov(Xk,Xj)=E[XkXj]−E[Xk]E[Xj] 由于每次摸球只能摸到一个球,所以 X k + X j ≤ m X_k + X_j \leq m Xk+Xj≤m 。因此, X k X_k Xk 和 X j X_j Xj 是负相关的。
E [ X k X j ] = ∑ i = 0 m ∑ j = 0 m − i i ⋅ j ⋅ P ( X k = i , X j = j ) E[X_k X_j] = \sum_{i=0}^{m} \sum_{j=0}^{m-i} i \cdot j \cdot P(X_k = i, X_j = j) E[XkXj]=i=0∑mj=0∑m−ii⋅j⋅P(Xk=i,Xj=j) 由于 X k X_k Xk 和 X j X_j Xj 是负相关的,所以:
P ( X k = i , X j = j ) = P ( X k = i ) ⋅ P ( X j = j ∣ X k = i ) P(X_k = i, X_j = j) = P(X_k = i) \cdot P(X_j = j \mid X_k = i) P(Xk=i,Xj=j)=P(Xk=i)⋅P(Xj=j∣Xk=i) 给定 X k = i X_k = i Xk=i ,摸到第 j j j 种颜色球的概率变为 N j N − N k \frac{N_j}{N-N_k} N−NkNj ,所以:
P ( X j = j ∣ X k = i ) = ( m − i j ) ( N j N − N k ) j ( 1 − N j N − N k ) m − i − j P(X_j = j \mid X_k = i) = \binom{m-i}{j} \left( \frac{N_j}{N-N_k} \right)^j \left( 1 - \frac{N_j}{N-N_k} \right)^{m-i-j} P(Xj=j∣Xk=i)=(jm−i)(N−NkNj)j(1−N−NkNj)m−i−j E [ X k X j ] = ∑ i = 0 m i ⋅ ( m i ) p k i ( 1 − p k ) m − i ∑ j = 0 m − i j ⋅ ( m − i j ) ( N j N − N k ) j ( 1 − N j N − N k ) m − i − j E[X_k X_j] = \sum_{i=0}^{m} i \cdot \binom{m}{i} p_k^i (1-p_k)^{m-i} \sum_{j=0}^{m-i} j \cdot \binom{m-i}{j} \left( \frac{N_j}{N-N_k} \right)^j \left( 1 - \frac{N_j}{N-N_k} \right)^{m-i-j} E[XkXj]=i=0∑mi⋅(im)pki(1−pk)m−ij=0∑m−ij⋅(jm−i)(N−NkNj)j(1−N−NkNj)m−i−j 简化后得到:
E [ X k X j ] = ∑ i = 0 m − 1 i ⋅ ( m i ) p k i ( 1 − p k ) m − i ( m − i ) ( N j N − N k ) = m ∑ i = 0 m − 1 i ⋅ ( m − 1 i ) p k i ( 1 − p k ) m − i ( N j N − N k ) = m ( m − 1 ) P k ( 1 − P k ) P j 1 − P k = m ( m − 1 ) P k P j \begin{aligned} E[X_k X_j] &= \sum_{i=0}^{m-1} i \cdot \binom{m}{i} p_k^i (1-p_k)^{m-i} (m-i) \left( \frac{N_j}{N-N_k} \right) \\ &=m\sum_{i=0}^{m-1} i \cdot \binom{m-1}{i} p_k^i (1-p_k)^{m-i} \left( \frac{N_j}{N-N_k} \right)\\ &=m(m-1)P_k(1-P_k)\frac{P_j}{1-P_k}\\ &=m(m-1)P_kP_j \end{aligned} E[XkXj]=i=0∑m−1i⋅(im)pki(1−pk)m−i(m−i)(N−NkNj)=mi=0∑m−1i⋅(im−1)pki(1−pk)m−i(N−NkNj)=m(m−1)Pk(1−Pk)1−PkPj=m(m−1)PkPj 所以:
Cov ( X k , X j ) = m ( m − 1 ) P k P j − ( m P k ) ( m P j ) = − m P k P j \text{Cov}(X_k, X_j) = m(m-1)P_kP_j - (mP_k)(mP_j) = -mP_k P_j Cov(Xk,Xj)=m(m−1)PkPj−(mPk)(mPj)=−mPkPj 因此,协方差矩阵 Σ \Sigma Σ 为:
Σ k j = { m P k ( 1 − P k ) if k = j − m P k P j if k ≠ j \Sigma_{kj} = \begin{cases} mP_k(1-P_k) & \text{if } k = j \\ -mP_k P_j & \text{if } k \neq j \end{cases} Σkj={mPk(1−Pk)−mPkPjif k=jif k=j
(2) 设 P 1 = N 1 N P_1=\frac{N_1}{N} P1=NN1表示摸到第一种颜色球的概率。
P ( X 1 ( n ) ≥ i + 1 ) = ∑ k = i + 1 n ( n k ) P 1 k ⋅ ( 1 − P 1 ) n − k P(X_1(n)\geq i+1)= \sum_{k=i+1}^{n}\binom{n}{k} {P_1}^k \cdot({1-P_1})^{n-k} P(X1(n)≥i+1)=k=i+1∑n(kn)P1k⋅(1−P1)n−k P ( X 1 ( n + 1 ) ≥ i + 1 ) = ∑ k = i + 1 n + 1 ( n + 1 k ) P 1 k ⋅ ( 1 − P 1 ) n + 1 − k P(X_1(n+1)\geq i+1)= \sum_{k=i+1}^{n+1}\binom{n+1}{k} {P_1}^k \cdot({1-P_1})^{n+1-k} P(X1(n+1)≥i+1)=k=i+1∑n+1(kn+1)P1k⋅(1−P1)n+1−k P ( X 1 ( n + 1 ) ≥ i + 1 ) − P ( X 1 ( n ) ≥ i + 1 ) = ∑ k = i + 1 n + 1 ( n + 1 k ) P 1 k ( 1 − P 1 ) n + 1 − k − ∑ k = i + 1 n ( n k ) P 1 k ( 1 − P 1 ) n − k = ( n + 1 n + 1 ) P 1 n + 1 ( 1 − P 1 ) 0 + ∑ k = i + 1 n ( ( n + 1 k ) − ( n k ) ) P 1 k ( 1 − P 1 ) n + 1 − k = P 1 n + 1 + ∑ k = i + 1 n ( ( n + 1 k ) − ( n k ) ) P 1 k ( 1 − P 1 ) n + 1 − k \begin{aligned} P(X_1(n+1) \geq i+1) - P(X_1(n) \geq i+1) &= \sum_{k=i+1}^{n+1} \binom{n+1}{k} P_1^k (1-P_1)^{n+1-k} - \sum_{k=i+1}^{n} \binom{n}{k} P_1^k (1-P_1)^{n-k} \\ &= \binom{n+1}{n+1} P_1^{n+1} (1-P_1)^0 + \sum_{k=i+1}^{n} \left( \binom{n+1}{k} - \binom{n}{k} \right) P_1^k (1-P_1)^{n+1-k}\\ &= P_1^{n+1} + \sum_{k=i+1}^{n} \left( \binom{n+1}{k} - \binom{n}{k} \right) P_1^k (1-P_1)^{n+1-k} \end{aligned} P(X1(n+1)≥i+1)−P(X1(n)≥i+1)=k=i+1∑n+1(kn+1)P1k(1−P1)n+1−k−k=i+1∑n(kn)P1k(1−P1)n−k=(n+1n+1)P1n+1(1−P1)0+k=i+1∑n((kn+1)−(kn))P1k(1−P1)n+1−k=P1n+1+k=i+1∑n((kn+1)−(kn))P1k(1−P1)n+1−k
我们知道, ( n + 1 k ) = ( n k ) + ( n k − 1 ) \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} (kn+1)=(kn)+(k−1n) ,因此: ( n + 1 k ) − ( n k ) = ( n k − 1 ) \binom{n+1}{k} - \binom{n}{k} = \binom{n}{k-1} (kn+1)−(kn)=(k−1n) 将这个性质代入上式,得到: P ( X 1 ( n + 1 ) ≥ i + 1 ) − P ( X 1 ( n ) ≥ i + 1 ) = P 1 n + 1 + ∑ k = i + 1 n ( n k − 1 ) P 1 k ( 1 − P 1 ) n + 1 − k = ∑ j = i n ( n j ) P 1 j + 1 ( 1 − P 1 ) n − j = P 1 ∑ j = i n ( n j ) P 1 j ( 1 − P 1 ) n − j = P 1 P ( X 1 ( n ) ≥ i ) \begin{aligned} P(X_1(n+1) \geq i+1) - P(X_1(n) \geq i+1) &= P_1^{n+1} + \sum_{k=i+1}^{n} \binom{n}{k-1} P_1^k (1-P_1)^{n+1-k}\\ &= \sum_{j=i}^{n} \binom{n}{j} P_1^{j+1} (1-P_1)^{n-j} \\ &= P_1 \sum_{j=i}^{n} \binom{n}{j} P_1^j (1-P_1)^{n-j} \\ &= P_1 P(X_1(n) \geq i) \end{aligned} P(X1(n+1)≥i+1)−P(X1(n)≥i+1)=P1n+1+k=i+1∑n(k−1n)P1k(1−P1)n+1−k=j=i∑n(jn)P1j+1(1−P1)n−j=P1j=i∑n(jn)P1j(1−P1)n−j=P1P(X1(n)≥i) (3) 令 : f ( p ) = ∑ k = n − i n p k ( 1 − p ) n − k , g ( p ) = ∫ 0 p x n − i + 1 ( 1 − x ) i d x ∫ 0 1 x n − i + 1 ( 1 − x ) i d x f ′ ( p ) = ∑ k = n − i n ( n k ) k p k − 1 ( 1 − p ) n − k − ∑ k = n − i n − 1 ( n k ) p k ( n − k ) ( 1 − p ) n − k − 1 = ∑ k = n − i n n ⋅ C n − 1 k − 1 ⋅ p k − 1 ⋅ ( 1 − p ) n − k − ∑ k = n − i n − 1 n ⋅ C n − 1 k ⋅ p k ⋅ ( 1 − p ) n − k − 1 = ∑ k = n − i − 1 n − 1 n ⋅ C n − 1 k ⋅ p k ⋅ ( 1 − p ) n − k − 1 − ∑ k = n − i n − 1 n ⋅ C n − 1 k ⋅ p k ⋅ ( 1 − p ) n − k − 1 = n ⋅ C n − 1 n − i − 1 ⋅ p n − i − 1 ⋅ ( 1 − p ) i = Γ ( n + 1 ) Γ ( n − i ) Γ ( i + 1 ) p n − i − 1 ( 1 − p ) i \begin{align*} 令: f(p)&=\sum_{k=n-i}^{n} p^{k}(1-p)^{n-k},g(p)=\frac{\int_{0}^{p} x^{n-i+1}(1-x)^{i}dx}{\int_{0}^{1} x^{n-i+1}(1-x)^{i}dx}\\ f'(p) &= \sum_{k=n-i}^{n} \binom{n}{k} k p^{k-1} (1-p)^{n-k} - \sum_{k=n-i}^{n-1} \binom{n}{k} p^k (n-k)(1-p)^{n-k-1}\\ &= \sum_{k=n-i}^{n} n \cdot C_{n-1}^{k-1} \cdot p^{k-1} \cdot (1-p)^{n-k} - \sum_{k=n-i}^{n-1} n \cdot C_{n-1}^{k} \cdot p^{k} \cdot (1-p)^{n-k-1} \\ &= \sum_{k=n-i-1}^{n-1} n \cdot C_{n-1}^{k} \cdot p^{k} \cdot (1-p)^{n-k-1} - \sum_{k=n-i}^{n-1} n \cdot C_{n-1}^{k} \cdot p^{k} \cdot (1-p)^{n-k-1} \\ &= n \cdot C_{n-1}^{n-i-1} \cdot p^{n-i-1} \cdot (1-p)^{i} \\ &= \frac{\Gamma(n+1)}{\Gamma(n-i)\Gamma(i+1)} p^{n-i-1} (1-p)^{i} \end{align*} 令:f(p)f′(p)=k=n−i∑npk(1−p)n−k,g(p)=∫01xn−i+1(1−x)idx∫0pxn−i+1(1−x)idx=k=n−i∑n(kn)kpk−1(1−p)n−k−k=n−i∑n−1(kn)pk(n−k)(1−p)n−k−1=k=n−i∑nn⋅Cn−1k−1⋅pk−1⋅(1−p)n−k−k=n−i∑n−1n⋅Cn−1k⋅pk⋅(1−p)n−k−1=k=n−i−1∑n−1n⋅Cn−1k⋅pk⋅(1−p)n−k−1−k=n−i∑n−1n⋅Cn−1k⋅pk⋅(1−p)n−k−1=n⋅Cn−1n−i−1⋅pn−i−1⋅(1−p)i=Γ(n−i)Γ(i+1)Γ(n+1)pn−i−1(1−p)i g ′ ( p ) = d d p ∫ 0 p x n − i − 1 ( 1 − x ) i d x B e ( n − i , i + 1 ) = Γ ( n + 1 ) p n − i − 1 ( 1 − p ) i Γ ( n − i ) Γ ( i + 1 ) = f ′ ( p ) g'(p) =\frac{\frac{d}{dp} \int_{0}^{p} x^{n-i-1}(1-x)^{i}dx }{Be(n-i,i+1)}=\frac{\Gamma(n+1)p^{n-i-1}(1-p)^{i}}{\Gamma(n-i)\Gamma(i+1)}=f'(p) g′(p)=Be(n−i,i+1)dpd∫0pxn−i−1(1−x)idx=Γ(n−i)Γ(i+1)Γ(n+1)pn−i−1(1−p)i=f′(p) 下面验证当 p = 0 p = 0 p=0 和 p = 1 p = 1 p=1 时, f ( p ) f(p) f(p) 和 g ( p ) g(p) g(p) 是否相等。 f ( 0 ) = 0 , g ( 0 ) = 0 f(0) =0, g(0) = 0 f(0)=0,g(0)=0 f ( 1 ) = ∑ k = n − i n 1 k ( 1 − 1 ) n − k = 1 , g ( 1 ) = ∫ 0 1 x n − i − 1 ( 1 − x ) i d x ∫ 0 1 x n − i − 1 ( 1 − x ) i d x = 1 f(1) = \sum_{k=n-i}^{n} 1^{k}(1-1)^{n-k} = 1, g(1) = \frac{\int_{0}^{1} x^{n-i-1}(1-x)^{i}dx}{\int_{0}^{1} x^{n-i-1}(1-x)^{i}dx} = 1 f(1)=k=n−i∑n1k(1−1)n−k=1,g(1)=∫01xn−i−1(1−x)idx∫01xn−i−1(1−x)idx=1 由于 f ′ ( p ) = g ′ ( p ) f'(p) = g'(p) f′(p)=g′(p) 并且 f ( p ) f(p) f(p) 和 g ( p ) g(p) g(p) 在边界条件 p = 0 p = 0 p=0 和 p = 1 p = 1 p=1 下相等,得出结论 f ( p ) = g ( p ) f(p) = g(p) f(p)=g(p) 对所有 p p p 成立。
-
在 U ( θ − c U(\theta-c U(θ−c, θ + c ) \theta+c) θ+c)区间内取样本: X 1 , . . . , X n X_1,...,X_n X1,...,Xn
(1)求 θ \theta θ的矩估计和极大似然估计.
(2)证明 X ( 1 ) + X ( n ) 2 \frac{X_{(1)}+X_{(n)}}{2} 2X(1)+X(n)是 θ \theta θ的无偏估计.
Solution:
(1) X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1,X2,…,Xn 来自均匀分布 U ( θ − c , θ + c ) U(\theta-c, \theta+c) U(θ−c,θ+c) , 期望为: θ − c + θ + c 2 = θ \frac{\theta-c+\theta+c}{2}=\theta 2θ−c+θ+c=θ 。样本均值 X ˉ \bar{X} Xˉ 是总体均值的矩估计: 矩估计 : θ ^ = X ˉ = 1 n ∑ i = 1 n X i 矩估计: \hat{\theta} = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i 矩估计:θ^=Xˉ=n1i=1∑nXi f ( x ; θ ) = 1 2 c , θ − c ≤ x ≤ θ + c f(x; \theta) = \frac{1}{2c} \quad , \quad \theta-c \leq x \leq \theta+c f(x;θ)=2c1,θ−c≤x≤θ+c L ( θ ) = ∏ i = 1 n f ( X i ; θ ) = ( 1 2 c ) n , θ − c ≤ X ( 1 ) ≤ X ( n ) ≤ θ + c L(\theta) = \prod_{i=1}^n f(X_i; \theta) = \left(\frac{1}{2c}\right)^n \quad, \quad \theta-c \leq X_{(1)} \leq X_{(n)} \leq \theta+c L(θ)=i=1∏nf(Xi;θ)=(2c1)n,θ−c≤X(1)≤X(n)≤θ+c θ − c ≤ X ( 1 ) \theta-c \leq X_{(1)} θ−c≤X(1) 和 X ( n ) ≤ θ + c X_{(n)} \leq \theta+c X(n)≤θ+c 都成立时似然函数最大,即 X ( n ) − c ≤ θ ≤ X ( 1 ) + c X_{(n)}-c \leq\theta\leq X_{(1)}+c X(n)−c≤θ≤X(1)+c。因此,极大似然估计为: θ ^ M L E = { θ ∣ X ( n ) − c ≤ θ ≤ X ( 1 ) + c } \hat{\theta}_{MLE}=\{ \theta| X_{(n)}-c \leq\theta\leq X_{(1)}+c \} θ^MLE={θ∣X(n)−c≤θ≤X(1)+c}
(2)
令 : Y i = X i − a b − a , Y i ∼ U ( 0 , 1 ) , Y ( k ) ∼ B e t a ( k , n − k + 1 ) 令: Y_i=\frac{X_i-a}{b-a},Y_i\sim U(0,1),Y_{(k)}\sim Beta(k,n-k+1) 令:Yi=b−aXi−a,Yi∼U(0,1),Y(k)∼Beta(k,n−k+1) 则 Y ( 1 ) ∼ B e t a ( 1 , n ) , E ( Y ( 1 ) ) = 1 n + 1 , E ( X ( 1 ) ) = b − a n + 1 + a 则Y_{(1)}\sim Beta(1,n),E(Y_{(1)})=\frac{1}{n+1},E(X_{(1)})=\frac{b-a}{n+1}+a 则Y(1)∼Beta(1,n),E(Y(1))=n+11,E(X(1))=n+1b−a+a Y ( n ) ∼ B e t a ( n , 1 ) , E ( Y ( 1 ) ) = n n + 1 , E ( X ( n ) ) = n ( b − a ) n + 1 + a Y_{(n)}\sim Beta(n,1),E(Y_{(1)})=\frac{n}{n+1},E(X_{(n)})=\frac{n(b-a)}{n+1}+a Y(n)∼Beta(n,1),E(Y(1))=n+1n,E(X(n))=n+1n(b−a)+a 其中 a = θ − c , b = θ + c a=\theta-c,b=\theta+c a=θ−c,b=θ+c, 所以对于均匀分布 U ( θ − c , θ + c ) U(\theta-c, \theta+c) U(θ−c,θ+c) ,最小值 X ( 1 ) X_{(1)} X(1) 和最大值 X ( n ) X_{(n)} X(n) 的期望值分别为:
E [ X ( 1 ) ] = 2 c n + 1 + θ − c , E [ X ( n ) ] = 2 n c n + 1 + θ − c , E [ X ( 1 ) + X ( n ) 2 ] = θ E[X_{(1)}] = \frac{2c}{n+1}+\theta-c, E[X_{(n)}] =\frac{2nc}{n+1}+ \theta-c, E\left[\frac{X_{(1)}+X_{(n)}}{2}\right] = \theta E[X(1)]=n+12c+θ−c,E[X(n)]=n+12nc+θ−c,E[2X(1)+X(n)]=θ 所以 X ( 1 ) + X ( n ) 2 \frac{X_{(1)}+X_{(n)}}{2} 2X(1)+X(n) 是 θ \theta θ 的无偏估计。
-
X 1 , . . . , X n X_1,...,X_n X1,...,Xn服从正态分布 N ( μ , σ 2 ) N(\mu,{\sigma}^2) N(μ,σ2) H 0 : μ = μ 0 , H 1 : μ > μ 0 H_0:\mu={\mu}_0,\quad H_1:\mu>{\mu}_0 H0:μ=μ0,H1:μ>μ0(1)介绍假设检验原理.
(2) 分别求在 σ 2 {\sigma}^2 σ2已知和未知下的 p p p值表达式和其分布.
Solution:
(1) 假设检验是统计学中的一种方法,用于判断一个假设是否成立, 假设检验的步骤如下:
1.提出假设: H 0 : μ = μ 0 , H 1 : μ > μ 0 H_0:\mu={\mu}_0,\quad H_1:\mu>{\mu}_0 H0:μ=μ0,H1:μ>μ0 。
2.选择检验统计量:根据数据的类型和分布选择合适的检验统计量,当 σ \sigma σ已知的时候可以用单样本的 u u u检验,当 σ \sigma σ未知时用 t t t检验。
3.确定显著性水平:选择一个显著性水平 α \alpha α ,通常为 0.05 或 0.01。
4.计算检验统计量的值:根据样本数据计算检验统计量的值。当 σ = σ 0 \sigma={\sigma}_0 σ=σ0已知时统计量为 Z = n ( x ˉ − μ 0 ) σ Z=\frac{\sqrt{n}(\bar{x}-{\mu}_0)}{\sigma} Z=σn(xˉ−μ0),当 σ \sigma σ未知时统计量为: T = n ( x ˉ − μ 0 ) s T=\frac{\sqrt{n}(\bar{x}-{\mu}_0)}{s} T=sn(xˉ−μ0)
5.根据拒绝域做出决策:当 σ = σ 0 \sigma={\sigma}_0 σ=σ0已知时拒绝域为 W = { Z > z 1 − α } W=\{Z>z_{1-\alpha}\} W={Z>z1−α},当 σ \sigma σ未知时拒绝域为: W = { T > t 1 − α ( n − 1 ) } W=\{T>t_{1-\alpha}(n-1)\} W={T>t1−α(n−1)}。如果统计量落在拒绝域中 ,则拒绝零假设 ,接受备择假设 ;否则,不拒绝零假设 。
(2)(i) 在 σ 2 \sigma^2 σ2 已知时, 我们会选择检验统计量 u ( X ) = n X ‾ − μ 0 σ ∼ N ( 0 , 1 ) u(\boldsymbol{X}) ={\sqrt{n}} \frac{\overline{X}-\mu_0}{\sigma} \sim N(0,1) u(X)=nσX−μ0∼N(0,1), 当 u u u 较大时, 或 X ‾ \overline{X} X 比 μ 0 \mu_0 μ0 大很多时, 我们会拒绝原假设, p p p-值的含义是当原假设成立时发生比当前样本还要极端的可能性, 它显然是样本的函数. 如果已收集到样本 x 0 \boldsymbol{x}_0 x0, 对应有统计量 u 0 = u ( x 0 ) u_0 = u(\boldsymbol{x}_0) u0=u(x0), 那么 p p p-值是:
p ( x 0 ) = P ( Z ≥ u 0 ) = 1 − Φ ( u 0 ) = 1 − Φ ( u ( x 0 ) ) . p(\boldsymbol{x}_0) = P\left(Z \ge u_0 \right) = 1-\Phi(u_0) = 1- \Phi\left( u(\boldsymbol{x}_0) \right). p(x0)=P(Z≥u0)=1−Φ(u0)=1−Φ(u(x0)).
此时, 如果 x 0 \boldsymbol{x}_0 x0 是已知样本, 那么 p ( x 0 ) p(\boldsymbol{x}_0) p(x0) 也是已知量, 如果考虑样本是随机变量 X \boldsymbol{X} X, 那 p ( X ) p(\boldsymbol{X}) p(X) 也是随机变量, 即:
p ( X ) = 1 − Φ ( u ( X ) ) , p(\boldsymbol{X}) = 1- \Phi\left( u(\boldsymbol{X}) \right), p(X)=1−Φ(u(X)),
其中由于 u ( X ) ∼ N ( 0 , 1 ) u(\boldsymbol{X}) \sim N(0,1) u(X)∼N(0,1), 因此 Φ ( u ( X ) ) \Phi(u(\boldsymbol{X})) Φ(u(X)) 是分布函数作用在自身, Φ ( u ( X ) ) ∼ U ( 0 , 1 ) \Phi(u(\boldsymbol{X})) \sim U(0,1) Φ(u(X))∼U(0,1), 而 1 − U ( 0 , 1 ) 1-U(0,1) 1−U(0,1) 仍然服从 U ( 0 , 1 ) U(0,1) U(0,1), 因此:
p ( X ) = 1 − Φ ( u ( X ) ) ∼ U ( 0 , 1 ) . p(\boldsymbol{X}) = 1- \Phi\left( u(\boldsymbol{X}) \right) \sim U(0,1). p(X)=1−Φ(u(X))∼U(0,1).(ii) 在 σ 2 \sigma^2 σ2 未知时, 我们会选择检验统计量 u ( X ) = n X ‾ − μ 0 s ∼ t ( n − 1 ) u(\boldsymbol{X}) ={\sqrt{n}} \frac{\overline{X}-\mu_0}{s} \sim t(n-1) u(X)=nsX−μ0∼t(n−1), 当 u u u 较大时, 或 X ‾ \overline{X} X 比 μ 0 \mu_0 μ0 大很多时, 我们会拒绝原假设, 如果已收集到样本 x 0 \boldsymbol{x}_0 x0, 对应有统计量 u 0 = u ( x 0 ) u_0 = u(\boldsymbol{x}_0) u0=u(x0), 那么 p p p-值是:
p ( x 0 ) = P ( T ≥ u 0 ) = 1 − F t , n − 1 ( u ( x 0 ) ) . p(\boldsymbol{x}_0) = P\left(T \ge u_0 \right) = 1- F_{t,n-1}\left( u(\boldsymbol{x}_0) \right). p(x0)=P(T≥u0)=1−Ft,n−1(u(x0)).
其中 F t , n − 1 F_{t,n-1} Ft,n−1 是 t ( n − 1 ) t(n-1) t(n−1) 的分布函数. 此时, 如果 x 0 \boldsymbol{x}_0 x0 是已知样本, 那么 p ( x 0 ) p(\boldsymbol{x}_0) p(x0) 也是已知量, 如果考虑样本是随机变量 X \boldsymbol{X} X, 那 p ( X ) p(\boldsymbol{X}) p(X) 也是随机变量, 即:
p ( X ) = 1 − F t , n − 1 ( u ( X ) ) , p(\boldsymbol{X}) = 1- F_{t,n-1}\left( u(\boldsymbol{X}) \right), p(X)=1−Ft,n−1(u(X)),
其中由于 u ( X ) ∼ t ( n − 1 ) u(\boldsymbol{X}) \sim t(n-1) u(X)∼t(n−1), 因此 F t , n − 1 ( u ( X ) ) F_{t,n-1}(u(\boldsymbol{X})) Ft,n−1(u(X)) 是分布函数作用在自身, F t , n − 1 ( u ( X ) ) ∼ U ( 0 , 1 ) F_{t,n-1}(u(\boldsymbol{X})) \sim U(0,1) Ft,n−1(u(X))∼U(0,1), 而 1 − U ( 0 , 1 ) 1-U(0,1) 1−U(0,1) 仍然服从 U ( 0 , 1 ) U(0,1) U(0,1), 因此仍然有:
p ( X ) = 1 − F t , n − 1 ( u ( X ) ) ∼ U ( 0 , 1 ) . p(\boldsymbol{X}) = 1- F_{t,n-1}\left( u(\boldsymbol{X}) \right) \sim U(0,1). p(X)=1−Ft,n−1(u(X))∼U(0,1).
-
二元线性回归模型, y i = α + β x i + λ z i + ϵ , ϵ ∼ N ( 0 , σ 2 ) y_i=\alpha+\beta x_i+\lambda z_i+\epsilon,\quad \epsilon \sim N(0,{\sigma}^2) yi=α+βxi+λzi+ϵ,ϵ∼N(0,σ2)。
(1)求 β \beta β的极大似然估计,数学期望,方差.
(2)如果 y y y 写成 x x x 的一元回归模型,求 β \beta β最小二乘估计,判断其是否是无偏估计,并比较两种情况下 β \beta β的方差.
Solution:
(1) L = ∏ i = 1 n 1 2 π σ 2 exp ( − ( y i − α − β x i − λ z i ) 2 2 σ 2 ) L = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \alpha - \beta x_i - \lambda z_i)^2}{2\sigma^2}\right) L=i=1∏n2πσ21exp(−2σ2(yi−α−βxi−λzi)2) ln L = − n 2 log ( 2 π ) − n 2 log ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( y i − α − β x i − λ z i ) 2 \ln L = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \alpha - \beta x_i - \lambda z_i)^2 lnL=−2nlog(2π)−2nlog(σ2)−2σ21i=1∑n(yi−α−βxi−λzi)2 { ∂ ln L ∂ α = 0 → ∑ i = 1 n ( y i − α − β x i − λ z i ) = 0 ∂ ln L ∂ β = 0 → ∑ i = 1 n x i ( y i − α − β x i − λ z i ) = 0 ∂ ln L ∂ λ = 0 → ∑ i = 1 n z i ( y i − α − β x i − λ z i ) = 0 \left\{ \begin{array}{ll} \frac{\partial \ln L}{\partial \alpha} &=0 \rightarrow \sum_{i=1}^n (y_i - \alpha - \beta x_i - \lambda z_i) = 0\\\\ \frac{\partial \ln L}{\partial \beta} &=0\rightarrow \sum_{i=1}^n x_i (y_i - \alpha - \beta x_i - \lambda z_i) = 0 \\\\ \frac{\partial \ln L}{\partial \lambda} &=0\rightarrow \sum_{i=1}^n z_i (y_i - \alpha - \beta x_i - \lambda z_i) = 0 \end{array} \right. ⎩ ⎨ ⎧∂α∂lnL∂β∂lnL∂λ∂lnL=0→∑i=1n(yi−α−βxi−λzi)=0=0→∑i=1nxi(yi−α−βxi−λzi)=0=0→∑i=1nzi(yi−α−βxi−λzi)=0 即: { α ^ = y ˉ − β ^ x ˉ − λ ^ z ˉ , ( 1 ) α ^ ⋅ n x ˉ + β ^ ∑ i = 1 n x i 2 + λ ^ ∑ i = 1 n x i z i = ∑ i = 1 n x i y i , ( 2 ) α ^ ⋅ n z ˉ + β ^ ∑ i = 1 n x i z i + λ ^ ∑ i = 1 n z i 2 = ∑ i = 1 n y i z i , ( 3 ) \left\{ \begin{array}{l} \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} - \hat{\lambda}\bar{z},\quad (1)\\\\ \hat{\alpha} \cdot n\bar{x} + \hat{\beta}{\sum}_{i=1}^{n} x_{i}^{2} + \hat{\lambda}{\sum}_{i=1}^{n} x_{i}z_{i} ={\sum}_{i=1}^{n}x_{i}y_{i},\quad (2) \\\\ \hat{\alpha} \cdot n\bar{z} + \hat{\beta}{\sum}_{i=1}^{n} x_{i}z_{i} + \hat{\lambda}{\sum}_{i=1}^{n} z_{i}^{2} = {\sum}_{i=1}^{n} y_{i}z_{i},\quad (3) \end{array} \right. ⎩ ⎨ ⎧α^=yˉ−β^xˉ−λ^zˉ,(1)α^⋅nxˉ+β^∑i=1nxi2+λ^∑i=1nxizi=∑i=1nxiyi,(2)α^⋅nzˉ+β^∑i=1nxizi+λ^∑i=1nzi2=∑i=1nyizi,(3) 整理方程 (1)(2) 得到: β ^ l x x + λ ^ l x z = l x y \hat{\beta}l_{xx} + \hat{\lambda}l_{xz} = l_{xy} β^lxx+λ^lxz=lxy , 同理由方程(1) (3) 得到: β ^ l x z + λ ^ l z z = l z y \hat{\beta}l_{xz} + \hat{\lambda}l_{zz} = l_{zy} β^lxz+λ^lzz=lzy ,于是: { l x x ⋅ β ^ + l x z ⋅ λ ^ = l x y l x z ⋅ β ^ + l z z ⋅ λ ^ = l z y \begin{cases} l_{xx} \cdot \hat{\beta} + l_{xz} \cdot \hat{\lambda} = l_{xy} \\ l_{xz} \cdot \hat{\beta} + l_{zz} \cdot \hat{\lambda} = l_{zy} \end{cases} {lxx⋅β^+lxz⋅λ^=lxylxz⋅β^+lzz⋅λ^=lzy 根据克拉默法则解得: β M L E ^ = l x y l z z − l x z l z y l x x l z z − l x z 2 \hat{{\beta}_{MLE}} = \frac{l_{xy}l_{zz} - l_{xz}l_{zy}}{l_{xx}l_{zz} - l_{xz}^2} βMLE^=lxxlzz−lxz2lxylzz−lxzlzy
代入 α ^ = y ˉ − β ^ x ˉ − λ ^ z ˉ \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} - \hat{\lambda}\bar{z} α^=yˉ−β^xˉ−λ^zˉ 得到 α ^ \hat{\alpha} α^ 的值。 E ( β M L E ) = l z z ∑ i = 1 n ( x i − x ˉ ) E ( y i − y ˉ ) − l x z ∑ i = 1 n ( z i − z ˉ ) E ( y i − y ˉ ) l x x l z z − l x z 2 = β ( l x x l z z − l x z 2 ) l x x l z z − l x z 2 = β V a r ( β M L E ) = l z z 2 V a r ( l x y ) + l x z 2 V a r ( l z y ) − 2 l x z l z z C o v ( l x y , l z y ) ( l x x l z z − l x z 2 ) 2 = l z z 2 l x x σ 2 + l x z 2 l z z σ 2 − 2 l x z l z z l x z σ 2 ( l x x l z z − l x z 2 ) 2 = l z z σ 2 l x x l z z − l x z 2 \begin{aligned} E({\beta}_{MLE}) &= \frac{l_{zz} \sum_{i=1}^{n} (x_i - \bar{x})E(y_i - \bar{y})-l_{xz}\sum_{i=1}^{n} (z_i - \bar{z})E(y_i - \bar{y})}{l_{xx}l_{zz} - l_{xz}^2} \\ &=\frac{\beta(l_{xx}l_{zz} - l_{xz}^2)}{l_{xx}l_{zz} - l_{xz}^2}\\ &= \beta\\ Var({\beta}_{MLE}) &= \frac{{l_{zz}}^2 Var(l_{xy})+{l_{xz}}^2 Var(l_{zy})-2l_{xz}l_{zz}Cov(l_{xy},l_{zy})} {(l_{xx}l_{zz} - l_{xz}^2)^2} \\ &=\frac{{l_{zz}}^2 l_{xx}{\sigma}^2+{l_{xz}}^2 l_{zz}{\sigma}^2-2l_{xz}l_{zz}l_{xz}{\sigma}^2} {(l_{xx}l_{zz} - l_{xz}^2)^2} \\ &=\frac{l_{zz}{\sigma}^2}{l_{xx}l_{zz} - l_{xz}^2} \end{aligned} E(βMLE)Var(βMLE)=lxxlzz−lxz2lzz∑i=1n(xi−xˉ)E(yi−yˉ)−lxz∑i=1n(zi−zˉ)E(yi−yˉ)=lxxlzz−lxz2β(lxxlzz−lxz2)=β=(lxxlzz−lxz2)2lzz2Var(lxy)+lxz2Var(lzy)−2lxzlzzCov(lxy,lzy)=(lxxlzz−lxz2)2lzz2lxxσ2+lxz2lzzσ2−2lxzlzzlxzσ2=lxxlzz−lxz2lzzσ2( 克拉默法则是一种通过行列式求解线性方程组的方法。对于线性方程组: { a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 \begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases} {a1x+b1y=c1a2x+b2y=c2 其解为: x = D x D , y = D y D x = \frac{D_x}{D}, \quad y = \frac{D_y}{D} x=DDx,y=DDy
其中 D D D 是系数矩阵的行列式, D x D_x Dx 和 D y D_y Dy 分别是通过将 D D D 的第一列和第二列替换为常数项 c 1 , c 2 c_1, c_2 c1,c2 得到的行列式。)
(2)此时: y i = α + β x i + ϵ , ϵ ∼ N ( 0 , σ 2 ) , S = ∑ i = 1 n ( Y i − Y ^ i ) 2 = ∑ i = 1 n ( Y i − ( α + β X i ) ) 2 y_i=\alpha+\beta x_i+\epsilon,\quad \epsilon \sim N(0,{\sigma}^2), S = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^n (Y_i - (\alpha + \beta X_i))^2 yi=α+βxi+ϵ,ϵ∼N(0,σ2),S=i=1∑n(Yi−Y^i)2=i=1∑n(Yi−(α+βXi))2 { ∂ S ∂ α = − 2 ∑ i = 1 n ( Y i − α − β X i ) = − 2 ( ∑ i = 1 n Y i − n α − β ∑ i = 1 n X i ) = 0 , α = Y ˉ − β X ˉ ∂ S ∂ β = − 2 ∑ i = 1 n ( Y i − α − β X i ) X i = − 2 ( ∑ i = 1 n Y i X i − α ∑ i = 1 n X i − β ∑ i = 1 n X i 2 ) = 0 , \left\{ \begin{array}{l} \frac{\partial S}{\partial \alpha} = -2 \sum_{i=1}^n (Y_i - \alpha - \beta X_i) = -2 \left( \sum_{i=1}^n Y_i - n\alpha- \beta \sum_{i=1}^n X_i \right) =0,\quad \alpha = \bar{Y} - \beta \bar{X} \\\\ \frac{\partial S}{\partial \beta} = -2 \sum_{i=1}^n (Y_i - \alpha - \beta X_i)X_i = -2 \left( \sum_{i=1}^n Y_i X_i - \alpha \sum_{i=1}^n X_i - \beta \sum_{i=1}^n X_i^2 \right) =0,\quad \end{array} \right. ⎩ ⎨ ⎧∂α∂S=−2∑i=1n(Yi−α−βXi)=−2(∑i=1nYi−nα−β∑i=1nXi)=0,α=Yˉ−βXˉ∂β∂S=−2∑i=1n(Yi−α−βXi)Xi=−2(∑i=1nYiXi−α∑i=1nXi−β∑i=1nXi2)=0, 将 α = Y ˉ − β X ˉ \alpha = \bar{Y} - \beta \bar{X} α=Yˉ−βXˉ 代入方程,得到: ∑ i = 1 n Y i X i − ( Y ˉ − β X ˉ ) ∑ i = 1 n X i − β ∑ i = 1 n X i 2 = 0 , β ^ = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 \sum_{i=1}^n Y_i X_i - (\bar{Y} - \beta \bar{X}) \sum_{i=1}^n X_i - \beta \sum_{i=1}^n X_i^2 = 0 ,\quad \hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} i=1∑nYiXi−(Yˉ−βXˉ)i=1∑nXi−βi=1∑nXi2=0,β^=∑i=1n(Xi−Xˉ)2∑i=1n(Xi−Xˉ)(Yi−Yˉ) E ( β ^ ) = ∑ i = 1 n ( X i − X ˉ ) E ( Y i − Y ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 = ∑ i = 1 n ( X i − X ˉ ) ( α + β X i − α − β X ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 = ∑ i = 1 n ( X i − X ˉ ) 2 β ∑ i = 1 n ( X i − X ˉ ) 2 = β \begin{aligned} E(\hat{\beta}) &= \frac{\sum_{i=1}^{n} (X_i - \bar{X})E(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\ &= \frac{\sum_{i=1}^{n} (X_i - \bar{X})(\alpha+ \beta X_i -\alpha - \beta \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\ &= \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 \beta}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\ &= \beta \end{aligned} E(β^)=∑i=1n(Xi−Xˉ)2∑i=1n(Xi−Xˉ)E(Yi−Yˉ)=∑i=1n(Xi−Xˉ)2∑i=1n(Xi−Xˉ)(α+βXi−α−βXˉ)=∑i=1n(Xi−Xˉ)2∑i=1n(Xi−Xˉ)2β=β 故其是无偏估计。 Var ( β ^ ) = σ 2 l x x ≤ Var ( β ^ M L E ) \text{Var}(\hat{\beta})= \frac{\sigma^2}{l_{xx}} \leq \text{Var}(\hat{\beta}_{MLE}) Var(β^)=lxxσ2≤Var(β^MLE)
-
白噪声: ϵ t ∼ N ( 0 , σ 2 ) {\epsilon}_t \sim N(0,{\sigma}^2) ϵt∼N(0,σ2), X t = 0.5 X t − 1 + ϵ t − 1.1 ϵ t − 1 + 0.3 ϵ t − 2 X_t=0.5X_{t-1}+{\epsilon}_t-1.1{\epsilon}_{t-1}+0.3{\epsilon}_{t-2} Xt=0.5Xt−1+ϵt−1.1ϵt−1+0.3ϵt−2
(1)化简模型.
(2)化简模型是否宽平稳?求其自相关系数。
Solution: (1) 该模型是 ARMA(1,2) 模型, 其简化形式是
( 1 − 0.5 B ) X t = ( 1 − 1.1 B + 0.3 B 2 ) ϵ t , \left( 1-0.5B \right) X_t=\left( 1-1.1B+0.3B^2 \right) \epsilon _t, (1−0.5B)Xt=(1−1.1B+0.3B2)ϵt,
其中 B B B 是滞后算子. 我们也可以定义滞后多项式
Φ ( z ) = 1 − 0.5 z , Θ ( z ) = 1 − 1.1 z + 0.3 z 2 , \Phi \left( z \right) =1-0.5z,\quad \Theta \left( z \right) =1-1.1z+0.3z^2, Φ(z)=1−0.5z,Θ(z)=1−1.1z+0.3z2,
此时模型可写作 Φ ( B ) X t = Θ ( B ) ϵ t \Phi(B)X_t = \Theta(B) \epsilon_t Φ(B)Xt=Θ(B)ϵt.
(2) (i) ARMA 模型的宽平稳条件是其 AR 部分是宽平稳的, 即 Φ ( z ) = 0 \Phi(z)=0 Φ(z)=0 的根都在单位圆外, 此处其特征根 z 0 = 2 z_0=2 z0=2 显然在单位圆外, 因此模型宽平稳.
(ii) 为求其自相关系数, 我们需求解其传递形式 X t = ∑ j = 0 ∞ G j ϵ t − j X_t = \sum_{j=0}^{\infty} G_j \epsilon_{t-j} Xt=∑j=0∞Gjϵt−j, 其中 { G j } \{G_j\} {Gj} 是 Green 函数, 且 G 0 = 1 G_0=1 G0=1. 我们可以递推求解, 假设 我们需求解其传递形式 X t = ∑ j = 0 ∞ G j ϵ t − j X_t = \sum_{j=0}^{\infty} G_j \epsilon_{t-j} Xt=∑j=0∞Gjϵt−j, 其中 { G j } \{G_j\} {Gj} 是 Green 函数, 且 G 0 = 1 G_0=1 G0=1. 我们可以递推求解, 假设:
X t = ( 1 + G 1 B + G 2 B 2 + G 3 B 3 + ⋯ ) ϵ t , X_t=\left( 1+G_1B+G_2B^2+G_3B^3+\cdots \right) \epsilon _t, Xt=(1+G1B+G2B2+G3B3+⋯)ϵt,
又根据 Φ ( B ) X t = Θ ( B ) ϵ t \Phi(B)X_t = \Theta(B) \epsilon_t Φ(B)Xt=Θ(B)ϵt, 我们有:
( 1 − 0.5 B ) ( 1 + G 1 B + G 2 B 2 + G 3 B 3 + ⋯ ) = 1 − 1.1 B + 0.3 B 2 . (1-0.5B)\left( 1+G_1B+G_2B^2+G_3B^3+\cdots \right) = 1 - 1.1 B + 0.3 B^2. (1−0.5B)(1+G1B+G2B2+G3B3+⋯)=1−1.1B+0.3B2.
将左侧对应打开有:
1 + ( − 0.5 + G 1 ) B + ( − 0.5 G 1 + G 2 ) B 2 + ( − 0.5 G 2 + G 3 ) B 3 + ⋯ = 1 − 1.1 B + 0.3 B 2 , 1+\left( -0.5+G_1 \right) B+\left( -0.5G_1+G_2 \right) B^2+\left( -0.5G_2+G_3 \right) B^3+\cdots =1-1.1B+0.3B^2, 1+(−0.5+G1)B+(−0.5G1+G2)B2+(−0.5G2+G3)B3+⋯=1−1.1B+0.3B2,
这说明:
{ − 0.5 + G 1 = − 1.1 , − 0.5 G 1 + G 2 = 0.3 , − 0.5 G k + G k + 1 = 0 , k ≥ 2 , \begin{cases} -0.5+G_1=-1.1,\\ -0.5G_1+G_2=0.3,\\ -0.5G_k+G_{k+1}=0,\quad k\ge 2,\\ \end{cases} ⎩ ⎨ ⎧−0.5+G1=−1.1,−0.5G1+G2=0.3,−0.5Gk+Gk+1=0,k≥2,
我们解得: G 1 = − 0.6 , G 2 = 0 , G k = 0 , k ≥ 3 , G_1=-0.6,\quad G_2=0,\quad G_k=0,\,k\ge 3, G1=−0.6,G2=0,Gk=0,k≥3,
因此模型恰化为有限阶 X t = ϵ t − 0.6 ϵ t − 1 X_t = \epsilon_t - 0.6 \epsilon_{t-1} Xt=ϵt−0.6ϵt−1, 这一点也可以说明模型平稳,我们紧接着计算其自协方差函数 γ k \gamma_k γk, 显然只有 γ 0 \gamma_0 γ0, γ 1 \gamma_1 γ1 非零:
γ 0 = V a r ( X t ) = 1.36 σ 2 , γ 1 = E ( X t X t + 1 ) = − 0.6 σ 2 , γ k = 0 , k ≥ 2. \gamma_0 = Var(X_t) = 1.36 \sigma^2, \quad \gamma_1 = E(X_t X_{t+1})= -0.6 \sigma^2, \quad \gamma_k =0,\,\, k\ge 2. γ0=Var(Xt)=1.36σ2,γ1=E(XtXt+1)=−0.6σ2,γk=0,k≥2.
因此结论是:
ρ 0 = 1 , ρ 1 = − 15 34 , ρ 2 = ρ 3 = ⋯ = 0. \rho_0 = 1,\quad \rho_1 = - \frac{15}{34},\quad \rho_2 = \rho_3 = \cdots = 0. ρ0=1,ρ1=−3415,ρ2=ρ3=⋯=0.