复旦432统计学真题解答2025年-7到12题

复旦432统计学真题解答2025年

七、给定二元函数
f ( x , y ) = c ( e − x 2 + y 2 2 + x y ( x 2 − y 2 ) e I D ( x , y ) ) f(x,y)=c\left(e^{-\frac{x^2+y^2}{2}}+\frac{xy(x^2-y^2)}{\sqrt{e}}I_{D}(x,y)\right) f(x,y)=c(e2x2+y2+e xy(x2y2)ID(x,y))

其中 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D=\{(x,y) \mid x^2+y^2 \leq 1\} D={(x,y)x2+y21} c c c >0。(15分)

(1) 证明: f ( x , y ) > 0 f(x,y) > 0 f(x,y)>0

(2) 设 ( X , Y ) (X,Y) (X,Y) 的联合密度为 f ( x , y ) f(x,y) f(x,y) ,求 c c c

(3) 求 X , Y X,Y X,Y 的边缘分布,求 Cov ( X , Y ) \text{Cov}(X,Y) Cov(X,Y) X X X Y Y Y 是否独立?

Solution:

(1) ( x , y ) ∉ D (x,y) \notin D (x,y)/D 时显然大于0, ( x , y ) ∈ D (x,y) \in D (x,y)D 时,令 x = ρ cos ⁡ θ x = \rho\cos\theta x=ρcosθ y = ρ sin ⁡ θ y = \rho\sin\theta y=ρsinθ
f ( x , y ) = c ( e − ρ 2 2 + ρ 2 ⋅ sin ⁡ θ cos ⁡ θ ( cos ⁡ 2 θ − sin ⁡ 2 θ ) e ) > ( 1 − 1 2 ρ 2 + ρ 2 ⋅ sin ⁡ 4 θ 4 e ) > c ⋅ ( 1 − 1 2 − 1 4 e ) > 0 \begin{aligned} f(x,y) &= c\left(e^{-\frac{\rho^2}{2}} + \frac{\rho^2 \cdot \sin \theta \cos \theta (\cos^2 \theta - \sin^2 \theta)}{\sqrt{e}}\right)\\ &> \left(1 - \frac{1}{2} \rho^2 + \frac{\rho^2 \cdot \sin 4\theta}{4\sqrt{e}}\right) \\ &> c \cdot \left(1 - \frac{1}{2} - \frac{1}{4\sqrt{e}}\right) \\ &>0 \end{aligned} f(x,y)=c(e2ρ2+e ρ2sinθcosθ(cos2θsin2θ))>(121ρ2+4e ρ2sin4θ)>c(1214e 1)>0
(2) ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y )   d x   d y = 1. \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1. f(x,y)dxdy=1.
我们将积分分为两部分: ( x , y ) ∈ D (x,y) \in D (x,y)D ( x , y ) ∉ D (x,y) \notin D (x,y)/D
对于 ( x , y ) ∉ D (x,y) \notin D (x,y)/D ∫ − ∞ ∞ ∫ − ∞ ∞ c e − x 2 + y 2 2   d x   d y − ∫ D c e − x 2 + y 2 2   d x   d y . \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c e^{-\frac{x^2+y^2}{2}} \, dx \, dy - \int_{D} c e^{-\frac{x^2+y^2}{2}} \, dx \, dy. ce2x2+y2dxdyDce2x2+y2dxdy.
对于 ( x , y ) ∈ D (x,y) \in D (x,y)D ∫ D c ( e − x 2 + y 2 2 + x y ( x 2 − y 2 ) e )   d x   d y . \int_{D} c \left( e^{-\frac{x^2+y^2}{2}} + \frac{xy(x^2-y^2)}{\sqrt{e}} \right) \, dx \, dy. Dc(e2x2+y2+e xy(x2y2))dxdy.
将这两部分合并,我们得到, c ∫ − ∞ ∞ ∫ − ∞ ∞ e − x 2 + y 2 2   d x   d y = 1. c \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} \, dx \, dy = 1. ce2x2+y2dxdy=1.
x = r cos ⁡ θ x = r\cos\theta x=rcosθ y = r sin ⁡ θ y = r\sin\theta y=rsinθ ,则 x 2 + y 2 = r 2 x^{2}+y^{2}=r^{2} x2+y2=r2
r ≥ 0 , 0 ≤ θ ≤ 2 π r \geq 0,0 \leq \theta \leq 2\pi r0,0θ2π
∫ − ∞ ∞ ∫ − ∞ ∞ e − x 2 + y 2 2   d x   d y = ∫ 0 2 π ∫ 0 ∞ e − r 2 2 r d r d θ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} \, dx \, dy= \int_{0}^{2\pi}\int_{0}^{\infty} e^{-\frac{r^{2}}{2}}r drd\theta e2x2+y2dxdy=02π0e2r2rdrdθ u = r 2 u = r^{2} u=r2 d u = 2 r d r du = 2r dr du=2rdr
∫ 0 2 π d θ ∫ 0 ∞ e − r 2 2 r d r = ∫ 0 2 π d θ ∫ 0 ∞ 1 2 e − u 2 d u = ∫ 0 2 π d θ [ − e − u 2 ] 0 ∞ = ∫ 0 2 π d θ = 2 π \int_{0}^{2\pi}d\theta\int_{0}^{\infty} e^{-\frac{r^{2}}{2}}r dr = \int_{0}^{2\pi}d\theta\int_{0}^{\infty}\frac{1}{2}e^{-\frac{u}{2}}du=\int_{0}^{2\pi}d\theta\left[- e^{-\frac{u}{2}}\right]_{0}^{\infty} = \int_{0}^{2\pi}d\theta= 2\pi 02πdθ0e2r2rdr=02πdθ021e2udu=02πdθ[e2u]0=02πdθ=2π (也可直接根据二元正态分布的联合密度函数得出), 于是: c = 1 2 π c = \frac{1}{2\pi} c=2π1
(3) 首先,我们求 X X X 的边缘分布。由于 f ( x , y ) f(x,y) f(x,y) 关于 y y y 对称,所以 X X X 的边缘分布为
f X ( x ) = ∫ − ∞ ∞ f ( x , y )   d y = ∫ − ∞ ∞ 1 2 π ( e − x 2 + y 2 2 + x y ( x 2 − y 2 ) e 1 D ( x , y ) )   d y . f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy = \int_{-\infty}^{\infty} \frac{1}{2\pi} \left( e^{-\frac{x^2+y^2}{2}} + \frac{xy(x^2-y^2)}{\sqrt{e}} 1_{D}(x,y) \right) \, dy. fX(x)=f(x,y)dy=2π1(e2x2+y2+e xy(x2y2)1D(x,y))dy.
由于 x y ( x 2 − y 2 ) e 1 D ( x , y ) \frac{xy(x^2-y^2)}{\sqrt{e}} 1_{D}(x,y) e xy(x2y2)1D(x,y) 关于 y y y 是奇函数,所以
∫ − ∞ ∞ x y ( x 2 − y 2 ) e 1 D ( x , y )   d y = 0. \int_{-\infty}^{\infty} \frac{xy(x^2-y^2)}{\sqrt{e}} 1_{D}(x,y) \, dy = 0. e xy(x2y2)1D(x,y)dy=0.
因此: f X ( x ) = 1 2 π ∫ − ∞ ∞ e − x 2 + y 2 2   d y = 1 2 π e − x 2 2 . f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} \, dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}. fX(x)=2π1e2x2+y2dy=2π 1e2x2.
同理, y y y 的边缘分布为:
f Y ( y ) = 1 2 π e − y 2 2 . f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}. fY(y)=2π 1e2y2.
由于: f Y ( y ) f X ( x ) ≠ f ( x , y ) f_Y(y)f_X(x)≠ f(x,y) fY(y)fX(x)=f(x,y),所以X,Y不独立。
E ( X Y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ x y f ( x , y )   d x   d y = ∫ − ∞ ∞ ∫ − ∞ ∞ x y 1 2 π ( e − x 2 + y 2 2 + x y ( x 2 − y 2 ) e 1 D ( x , y ) )   d x   d y . E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) \, dx \, dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \frac{1}{2\pi} \left( e^{-\frac{x^2+y^2}{2}} + \frac{xy(x^2-y^2)}{\sqrt{e}} 1_{D}(x,y) \right) \, dx \, dy. E(XY)=xyf(x,y)dxdy=xy2π1(e2x2+y2+e xy(x2y2)1D(x,y))dxdy.
由于 e − x 2 + y 2 2 e^{-\frac{x^2+y^2}{2}} e2x2+y2 关于 x x x y y y 都是对称的,所以
∫ − ∞ ∞ ∫ − ∞ ∞ x y e − x 2 + y 2 2   d x   d y = 0. \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy e^{-\frac{x^2+y^2}{2}} \, dx \, dy = 0. xye2x2+y2dxdy=0. 令: x = r cos ⁡ θ x=r\cos\theta x=rcosθ y = r sin ⁡ θ y=r\sin\theta y=rsinθ ,积分变为:
∫ 0 2 π ∫ 0 1 ( r cos ⁡ θ ) ( r sin ⁡ θ ) ( r 2 cos ⁡ 2 θ − r 2 sin ⁡ 2 θ ) e r   d r   d θ . \int_{0}^{2\pi}\int_{0}^{1}\frac{(r\cos\theta)(r\sin\theta)(r^2\cos^2\theta-r^2\sin^2\theta)}{\sqrt{e}}r\,dr\,d\theta. 02π01e (rcosθ)(rsinθ)(r2cos2θr2sin2θ)rdrdθ.
简化被积函数,我们得到:
∫ 0 2 π ∫ 0 1 r 5 cos ⁡ θ sin ⁡ θ ( cos ⁡ 2 θ − sin ⁡ 2 θ ) e   d r   d θ . \int_{0}^{2\pi}\int_{0}^{1}\frac{r^5\cos\theta\sin\theta(\cos^2\theta-\sin^2\theta)}{\sqrt{e}}\,dr\,d\theta. 02π01e r5cosθsinθ(cos2θsin2θ)drdθ.
注意到 cos ⁡ θ sin ⁡ θ ( cos ⁡ 2 θ − sin ⁡ 2 θ ) \cos\theta\sin\theta(\cos^2\theta-\sin^2\theta) cosθsinθ(cos2θsin2θ) 是一个奇函数,因此:
∫ 0 2 π cos ⁡ θ sin ⁡ θ ( cos ⁡ 2 θ − sin ⁡ 2 θ )   d θ = 0. \int_{0}^{2\pi}\cos\theta\sin\theta(\cos^2\theta-\sin^2\theta)\,d\theta=0. 02πcosθsinθ(cos2θsin2θ)dθ=0. 所以: C O V ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) = 0 COV(X,Y)=E(XY) -E(X)E(Y)=0 COV(X,Y)=E(XY)E(X)E(Y)=0


八、 打怪物会爆装备1和2,爆出装备1的概率是0.2 ,爆出装备2的概率是 0.2,不获得任何装备的概率是0.6,设 τ \tau τ 是集齐装备所用的次数,求 E τ E\tau Eτ V a r τ Var\tau Varτ 。(10分)

Solution:

令: ξ 1 \xi_1 ξ1 表示收集到第一件装备所需的次数,其成功概率为 0.4(因为获得装备1或装备2的概率为 0.2 + 0.2 = 0.4)。 ξ 2 \xi_2 ξ2 表示在收集到第一件装备后,收集到第二件装备所需的次数,其成功概率为 0.2(因为获得第2个装备的概率为 0.2)。
对于几何分布随机变量 ξ ∼ G e ( p ) \xi \sim Ge(p) ξGe(p) ,其期望 E ξ = 1 p E\xi = \frac{1}{p} Eξ=p1 。因此: E ξ 1 = 1 0.4 = 2.5 E\xi_1 = \frac{1}{0.4} = 2.5 Eξ1=0.41=2.5 E ξ 2 = 1 0.2 = 5 E\xi_2 = \frac{1}{0.2} = 5 Eξ2=0.21=5
E τ = E ξ 1 + E ξ 2 = 2.5 + 5 = 7.5 E\tau = E\xi_1 + E\xi_2 = 2.5 + 5 = 7.5 Eτ=Eξ1+Eξ2=2.5+5=7.5
对于几何分布随机变量 ξ ∼ G e ( p ) \xi \sim Ge(p) ξGe(p) ,其方差 V a r ξ = 1 − p p 2 Var\xi = \frac{1-p}{p^2} Varξ=p21p 。因此:
V a r ξ 1 = 1 − 0.4 0. 4 2 = 0.6 0.16 = 3.75 V a r ξ 2 = 1 − 0.2 0. 2 2 = 0.8 0.04 = 20 V a r τ = V a r ξ 1 + V a r ξ 2 = 3.75 + 20 = 23.75 \begin{aligned} Var\xi_1 &= \frac{1-0.4}{0.4^2} = \frac{0.6}{0.16} = 3.75\\ Var\xi_2 &= \frac{1-0.2}{0.2^2} = \frac{0.8}{0.04} = 20\\ Var\tau &= Var\xi_1 + Var\xi_2 = 3.75 + 20 = 23.75 \end{aligned} Varξ1Varξ2Varτ=0.4210.4=0.160.6=3.75=0.2210.2=0.040.8=20=Varξ1+Varξ2=3.75+20=23.75 因此,收集到两件装备所需的期望次数为 7.5 次,方差为 23.75。


九、设 X 1 , ⋯   , X n X_1, \cdots, X_n X1,,Xn 独立同分布于连续函数 F F F, 样本 Y i = μ + σ [ − ln ⁡ F ( X i ) ] − 1 2 Y_i = \mu + \sigma[-\ln F(X_i)]^{-\frac{1}{2}} Yi=μ+σ[lnF(Xi)]21 , μ > 0 , σ > 0 \mu>0,\sigma>0 μ>0,σ>0 (15分)

(1) 求 ( μ , σ ) (\mu,\sigma) (μ,σ) 的最大似然估计。

(2) 若 μ \mu μ 已知,求 σ 2 \sigma^2 σ2 的充分统计量。

Solution:

(1) 令 Z i = F ( X i ) Z_i = F(X_i) Zi=F(Xi) ,则 Z i ∼ U ( 0 , 1 ) Z_i \sim U(0,1) ZiU(0,1) Y i = μ + σ [ − ln ⁡ Z i ] − 1 2 Y_i = \mu + \sigma[-\ln Z_i]^{-\frac{1}{2}} Yi=μ+σ[lnZi]21 由于 Z i ∼ U ( 0 , 1 ) Z_i \sim U(0,1) ZiU(0,1) − ln ⁡ Z i -\ln Z_i lnZi 服从参数为 1 的指数分布,即 − ln ⁡ Z i ∼ Exp ( 1 ) -\ln Z_i \sim \text{Exp}(1) lnZiExp(1)
W i = [ − ln ⁡ Z i ] − 1 2 W_i = [-\ln Z_i]^{-\frac{1}{2}} Wi=[lnZi]21
P ( w i ≤ w ) = P ( ( − ln ⁡ z i ) − 1 2 ≤ w ) = P ( z i ≤ e − w − 2 ) = e − w − 2 \begin{align*} P(w_i \leq w) &= P\left((-\ln z_i)^{-\frac{1}{2}} \leq w\right) \\ &= P\left(z_i \leq e^{-w^{-2}}\right) \\ &= e^{-w^{-2}} \end{align*} P(wiw)=P((lnzi)21w)=P(ziew2)=ew2 f w i ( w ) = 2 w − 3 e − w − 2 , y i = μ + σ ⋅ w i f_{w_i}(w) = 2w^{-3} e^{-w^{-2}}, \quad y_i = \mu + \sigma \cdot w_i fwi(w)=2w3ew2,yi=μ+σwi f Y i ( y i ) = f w i ( y i − μ σ ) ⋅ 1 σ = 2 σ 2 ⋅ ( y i − μ ) − 3 ⋅ e − ( σ y i − μ ) 2 f_{Y_i}(y_i) = f_{w_i}\left(\frac{y_i - \mu}{\sigma}\right) \cdot \frac{1}{\sigma} = 2\sigma^2 \cdot (y_i - \mu)^{-3} \cdot e^{-\left(\frac{\sigma}{y_i-\mu}\right)^2} fYi(yi)=fwi(σyiμ)σ1=2σ2(yiμ)3e(yiμσ)2 f ( y 1 , ⋯   , y n ) = ∏ i = 1 n 2 σ 2 ( y i − μ ) − 3 e − ( σ y i − μ ) 2 f(y_1, \cdots, y_n) = \prod_{i = 1}^{n} 2\sigma^2 (y_i - \mu)^{-3} e^{-\left(\frac{\sigma}{y_i-\mu}\right)^2} f(y1,,yn)=i=1n2σ2(yiμ)3e(yiμσ)2 ln ⁡ f = ∑ i = 1 n [ − 3 ln ⁡ ( y i − μ ) − ( σ y i − μ ) 2 ] + 2 n ln ⁡ σ + n ln ⁡ 2 \ln f = \sum_{i = 1}^{n} \left[-3\ln(y_i - \mu) - \left(\frac{\sigma}{y_i-\mu}\right)^2\right] + 2n\ln\sigma + n\ln 2 lnf=i=1n[3ln(yiμ)(yiμσ)2]+2nlnσ+nln2 μ \mu μ 的偏导数为:
∂ ln ⁡ f ∂ μ = ∑ i = 1 n [ 3 y i − μ − 2 σ 2 ( y i − μ ) 3 ] = 0 \frac{\partial \ln f}{\partial \mu} = \sum_{i = 1}^{n} \left[\frac{3}{y_i - \mu} - \frac{2\sigma^2}{(y_i-\mu)^3}\right] = 0 μlnf=i=1n[yiμ3(yiμ)32σ2]=0 ⇒ ∑ i = 1 n 3 ( y i − μ ) 2 − 2 σ 2 ( y i − μ ) 3 = 0 ( 1 ) \Rightarrow \sum_{i = 1}^{n} \frac{3(y_i - \mu)^2 - 2\sigma^2}{(y_i - \mu)^3} = 0 \quad (1) i=1n(yiμ)33(yiμ)22σ2=0(1) σ \sigma σ 的偏导数为: ∂ ln ⁡ f ∂ σ = ∑ i = 1 n − 2 σ ( y i − μ ) 2 + 2 n σ = 0 \frac{\partial \ln f}{\partial \sigma} = \sum_{i = 1}^{n}\frac{-2\sigma}{(y_i - \mu)^2} + \frac{2n}{\sigma} = 0 σlnf=i=1n(yiμ)22σ+σ2n=0 ⇒ ∑ i = 1 n 1 ( y i − μ ) 2 = n σ 2 ( 2 ) \Rightarrow \sum_{i = 1}^{n} \frac{1}{(y_i - \mu)^2} = \frac{n}{\sigma^2} \quad (2) i=1n(yiμ)21=σ2n(2)
S 1 ( μ ) = ∑ i = 1 n 1 y i − μ S_1(\mu)=\sum_{i=1}^{n}\frac{1}{y_{i}-\mu} S1(μ)=i=1nyiμ1 , S 2 ( μ ) = ∑ i = 1 n 1 ( y i − μ ) 2 S_2(\mu)=\sum_{i=1}^{n}\frac{1}{(y_{i}-\mu)^{2}} S2(μ)=i=1n(yiμ)21, S 3 ( μ ) = ∑ i = 1 n 1 ( y i − μ ) 3 S_3(\mu)=\sum_{i=1}^{n}\frac{1}{(y_{i}-\mu)^{3}} S3(μ)=i=1n(yiμ)31 ,则:
3 S 1 ( μ ) − 2 σ 2 S 3 ( μ ) = 0 , S 2 ( μ ) − n σ 2 = 0 3S_1(\mu)-2{\sigma}^2S_3(\mu)=0, S_2(\mu)-\frac{n}{{\sigma}^2}=0 3S1(μ)2σ2S3(μ)=0,S2(μ)σ2n=0 μ , σ \mu,\sigma μ,σ的极大似然估计即为满足上式的值。 ( ( (由于 ln ⁡ f \ln f lnf关于 μ , σ \mu,\sigma μ,σ并不单调,所以不能直接取 μ = y ( 1 ) \mu=y_{(1)} μ=y(1) ) ) )

(2) 根据因子分解定理,如果似然函数可以写成 L ( σ 2 ) = g ( T ( Y ) , σ 2 ) h ( Y ) L(\sigma^2) = g(T(Y), \sigma^2)h(Y) L(σ2)=g(T(Y),σ2)h(Y) 的形式,其中 T ( Y ) T(Y) T(Y) 是样本的函数, g g g h h h

是两个函数,那么 T ( Y ) T(Y) T(Y) σ 2 \sigma^2 σ2 的充分统计量。似然函数为: L ( σ 2 ) = ∏ i = 1 n 2 ( y i − μ ) − 3 e x p { ∑ i = 1 n [ − ( σ y i − μ ) 2 ] + 2 n l n ( σ ) } L(\sigma^2) = \prod_{i=1}^n 2(y_i-\mu)^{-3} exp\{\sum_{i=1}^n[-(\frac{\sigma}{y_i-\mu})^2]+2nln(\sigma)\} L(σ2)=i=1n2(yiμ)3exp{i=1n[(yiμσ)2]+2nln(σ)} 这里, T ( Y ) = ∑ i = 1 n 1 ( y i − μ ) 2 T(Y) = \sum_{i=1}^n \frac{1}{(y_i - \mu)^2} T(Y)=i=1n(yiμ)21 σ 2 \sigma^2 σ2 的充分统计量。


十、设总体为对数正态分布 L N ( μ , σ 2 ) LN(\mu, \sigma^2) LN(μ,σ2) ,简单样本为 X 1 , ⋯   , X n X_1, \cdots, X_n X1,,Xn。(15分)

(1) 求 μ \mu μ 的矩估计、最大似然估计。

(2) 求 θ = e μ + 1 2 \theta = e^{\mu + \frac{1}{2}} θ=eμ+21 的最大似然估计,并分析其是否无偏。

Solution:

(1) 对于对数正态分布 L N ( μ , σ 2 ) LN(\mu, \sigma^2) LN(μ,σ2) ,其均值 E ( X ) = e μ + σ 2 2 E(X) = e^{\mu + \frac{\sigma^2}{2}} E(X)=eμ+2σ2 。样本均值 X ˉ \bar{X} Xˉ 可作为 E ( X ) E(X) E(X) 的估计,因此:
X ˉ = e μ + σ 2 2 \bar{X} = e^{\mu + \frac{\sigma^2}{2}} Xˉ=eμ+2σ2
解出 μ \mu μ 得到矩估计:
μ 1 ^ = ln ⁡ ( X ˉ ) − σ 2 2 \hat{\mu1} = \ln(\bar{X}) - \frac{\sigma^2}{2} μ1^=ln(Xˉ)2σ2 L ( μ , σ ) = ∏ i = 1 n 1 X i σ 2 π e − ( ln ⁡ X i − μ ) 2 2 σ 2 L(\mu, \sigma) = \prod_{i=1}^n \frac{1}{X_i \sigma \sqrt{2\pi}} e^{-\frac{(\ln X_i - \mu)^2}{2\sigma^2}} L(μ,σ)=i=1nXiσ2π 1e2σ2(lnXiμ)2 ln ⁡ L ( μ , σ ) = − n ln ⁡ ( σ ) − n 2 ln ⁡ ( 2 π ) − ∑ i = 1 n ( ln ⁡ X i − μ ) 2 2 σ 2 − ∑ i = 1 n ln ⁡ X i \ln L(\mu, \sigma) = -n\ln(\sigma) - \frac{n}{2}\ln(2\pi) - \sum_{i=1}^n \frac{(\ln X_i - \mu)^2}{2\sigma^2} - \sum_{i=1}^n \ln X_i lnL(μ,σ)=nln(σ)2nln(2π)i=1n2σ2(lnXiμ)2i=1nlnXi μ \mu μ 求偏导数:
∂ ln ⁡ L ∂ μ = ∑ i = 1 n ln ⁡ X i − μ σ 2 = 0 μ ^ MLE = 1 n ∑ i = 1 n ln ⁡ X i \begin{aligned} \frac{\partial \ln L}{\partial \mu} &= \sum_{i=1}^n \frac{\ln X_i - \mu}{\sigma^2} = 0 \\ \hat{\mu}_{\text{MLE}} &= \frac{1}{n} \sum_{i=1}^n \ln X_i \end{aligned} μlnLμ^MLE=i=1nσ2lnXiμ=0=n1i=1nlnXi
(2) 由极大似然估计的不变性:若 ( μ ^ , σ ^ ) (\hat{\mu}, \hat{\sigma}) (μ^,σ^) ( μ , σ ) (\mu, \sigma) (μ,σ) 的极大似然估计,则对于任何函数 T ( μ , σ ) T(\mu, \sigma) T(μ,σ) T T T 的极大似然估计为

T ( μ ^ , σ ^ ) T(\hat{\mu}, \hat{\sigma}) T(μ^,σ^) 。因此, θ \theta θ 的最大似然估计为: θ ^ MLE = e μ ^ + 1 2 \hat{\theta}_{\text{MLE}} = e^{\hat{\mu} + \frac{1}{2}} θ^MLE=eμ^+21,由于 μ ^ MLE \hat{\mu}_{\text{MLE}} μ^MLE μ \mu μ 的无偏估计,我们有: E ( μ ^ MLE ) = μ E(\hat{\mu}_{\text{MLE}}) = \mu E(μ^MLE)=μ E ( e μ ) > e E ( μ ) = e μ E(e^{\mu})>e^{E(\mu)}=e^{\mu} E(eμ)>eE(μ)=eμ所以 θ \theta θ不是无偏估计。


十一、设随机变量 X X X 的概率密度函数为:
f ( x ; θ ) = { θ x θ − 1 , 0 < x < 1 , 0 , 其他 f(x; \theta) = \begin{cases} \theta x^{\theta -1}, & 0 < x < 1, \\ 0, & \text{其他} \end{cases} f(x;θ)={θxθ1,0,0<x<1,其他

X 1 , X 2 X_1, X_2 X1,X2 来自该总体的样本,考虑假设检验问题:
H 0 : θ = 1 ↔ H 1 : θ = 2 , H_0: \theta = 1 \leftrightarrow H_1: \theta = 2, H0:θ=1H1:θ=2,

其否定域为 W = { ( X 1 , X 2 ) ∣ X 1 X 2 > 3 4 } W = \{(X_1, X_2) \mid X_1 X_2 > \frac{3}{4}\} W={(X1,X2)X1X2>43} ,求第一、二类错误的概率。(15分)

Solution:

1.第一类错误:弃真。即在 θ = 1 \theta = 1 θ=1 的情况下, X 1 X 2 > 3 4 X_1 X_2 > \frac{3}{4} X1X2>43 的概率。
θ = 1 \theta = 1 θ=1 时, X X X 的概率密度函数为 f ( x ; 1 ) = 1 f(x; 1) = 1 f(x;1)=1 0 < x < 1 0 < x < 1 0<x<1 。因此, X 1 X_1 X1 X 2 X_2 X2 都是 ( 0 , 1 ) (0, 1) (0,1) 上的均匀分布, 3 4 x 1 < 1 \frac{3}{4x_1}<1 4x13<1, 求出 x 1 > 3 4 x_1> \frac{3}{4} x1>43
P ( X 1 X 2 > 3 4 , θ = 1 ) = ∫ 3 4 1 ∫ 3 4 x 1 1 1   d x 2   d x 1 = 1 4 + 3 ln ⁡ 3 4 − 3 ln ⁡ 2 2 P(X_1 X_2 > \frac{3}{4}, \theta = 1) = \int_{\frac{3}{4}}^1 \int_{\frac{3}{4x_1}}^1 1 \, dx_2 \, dx_1 =\frac{1}{4}+\frac{3 \ln 3}{4}-\frac{3\ln 2}{2} P(X1X2>43θ=1)=4314x1311dx2dx1=41+43ln323ln2
因此,第一类错误的概率为: α = 1 4 + 3 ln ⁡ 3 4 − 3 ln ⁡ 2 2 \alpha =\frac{1}{4}+\frac{3 \ln 3}{4}-\frac{3\ln 2}{2} α=41+43ln323ln2
2.第二类错误:取伪,即在 H 1 H_1 H1 为真时接受 H 0 H_0 H0 的概率。即在 θ = 2 \theta = 2 θ=2 的情况下, X 1 X 2 ≤ 3 4 X_1 X_2 \leq \frac{3}{4} X1X243 的概率。

x 1 < 3 4 x_1 < \frac{3}{4} x1<43 时, x 2 x_2 x2 的积分范围是 ( 0 , 1 ) (0, 1) (0,1),而当 x 1 ≥ 3 4 x_1 \geq \frac{3}{4} x143 时, x 2 x_2 x2 的积分范围是 ( 0 , 3 4 x 1 ) (0, \frac{3}{4x_1}) (0,4x13) 。因此: P ( X 1 X 2 ≤ 3 4 , θ = 2 ) = ∫ 0 3 4 2 x 1   d x 1 + ∫ 3 4 1 9 8 x 1   d x 1 = 9 16 + 9 ln ⁡ 2 4 − 9 ln ⁡ 3 8 P(X_1 X_2 \leq \frac{3}{4}, \theta = 2) = \int_0^{\frac{3}{4}} 2x_1 \, dx_1 + \int_{\frac{3}{4}}^1 \frac{9}{8x_1} \, dx_1=\frac{9}{16}+\frac{9\ln2}{4}-\frac{9\ln3}{8} P(X1X243θ=2)=0432x1dx1+4318x19dx1=169+49ln289ln3 因此,第二类错误的概率为:
β = 9 16 + 9 ln ⁡ 2 4 − 9 ln ⁡ 3 8 \beta =\frac{9}{16}+\frac{9\ln2}{4}-\frac{9\ln3}{8} β=169+49ln289ln3


十二、设总体 X X X 满足 P ( X > x ∣ θ ) = e − ( θ x ) k P(X > x | \theta) = e^{-(\theta x)^k} P(X>xθ)=e(θx)k ,参数 θ \theta θ 的先验分布满足 θ k ∼ Γ ( α , β ) \theta^k\sim \Gamma(\alpha, \beta) θkΓ(α,β) ,这里 α = 2 \alpha = 2 α=2 , β = 1 \beta = 1 β=1 , k = 2 k = 2 k=2

,给定样本 x 1 , … , x n x_1, \ldots, x_n x1,,xn ,求 θ \theta θ 的后验分布。(15分)

Solution:

由于 P ( X > x ∣ θ ) = e − ( θ x ) 2 P(X > x | \theta) = e^{-(\theta x)^2} P(X>xθ)=e(θx)2 ,我们可以得到 P ( X ≤ x ∣ θ ) = 1 − e − ( θ x ) 2 P(X \leq x | \theta) = 1 - e^{-(\theta x)^2} P(Xxθ)=1e(θx)2
f ( x i ∣ θ ) = d d x i P ( X ≤ x i ∣ θ ) = 2 θ 2 x i e − ( θ x i ) 2 f(x_i | \theta) = \frac{d}{dx_i} P(X \leq x_i | \theta) = 2 \theta^2 x_i e^{-(\theta x_i)^2} f(xiθ)=dxidP(Xxiθ)=2θ2xie(θxi)2 因此: L ( x 1 , … , x n ∣ θ ) = ∏ i = 1 n 2 θ 2 x i e − ( θ x i ) 2 = 2 n θ 2 n ( ∏ i = 1 n x i ) e − ∑ i = 1 n ( θ x i ) 2 L( x_1, \ldots, x_n|\theta ) = \prod_{i=1}^n 2 \theta^2 x_i e^{-(\theta x_i)^2} = 2^n \theta^{2n} \left( \prod_{i=1}^n x_i \right) e^{-\sum_{i=1}^n (\theta x_i)^2} L(x1,,xnθ)=i=1n2θ2xie(θxi)2=2nθ2n(i=1nxi)ei=1n(θxi)2 参数 θ 2 \theta^2 θ2 的先验分布为:
θ 2 ∼ Γ ( 2 , 1 ) \theta^2 \sim \Gamma(2, 1) θ2Γ(2,1) g ( θ 2 ) = 1 2 Γ ( 2 ) ( θ 2 ) 2 − 1 e − 1 ⋅ θ 2 = θ 2 e − θ 2 g(\theta^2) = \frac{1^2}{\Gamma(2)} (\theta^2)^{2-1} e^{-1 \cdot \theta^2} = \theta^2 e^{-\theta^2} g(θ2)=Γ(2)12(θ2)21e1θ2=θ2eθ2
根据贝叶斯定理,后验分布 π ( θ 2 ∣ x 1 , … , x n ) \pi(\theta^2|x_1,\ldots,x_n) π(θ2x1,,xn) 与似然函数和先验分布的乘积成正比:
π ( θ 2 ∣ x 1 , … , x n ) ∝ L ( θ ∣ x 1 , … , x n ) ⋅ g ( θ 2 ) \pi(\theta^2|x_1,\ldots,x_n) \propto L(\theta|x_1,\ldots,x_n) \cdot g(\theta^2) π(θ2x1,,xn)L(θx1,,xn)g(θ2)
代入似然函数和先验分布,得到:
π ( θ 2 ∣ x 1 , … , x n ) ∝ 2 n θ 2 n ( ∏ i = 1 n x i ) e − ∑ i = 1 n ( θ x i ) 2 ⋅ θ 2 e − θ 2 \begin{aligned} \pi(\theta^2|x_1,\ldots,x_n) \propto 2^n \theta^{2n} \left( \prod_{i=1}^n x_i \right) e^{-\sum_{i=1}^n (\theta x_i)^2} \cdot \theta^2 e^{-\theta^2} \end{aligned} π(θ2x1,,xn)2nθ2n(i=1nxi)ei=1n(θxi)2θ2eθ2 π ( θ 2 ∣ x 1 , … , x n ) ∝ θ 2 n + 2 e − θ 2 ( ∑ i = 1 n x i 2 + 1 ) \pi(\theta^2|x_1,\ldots,x_n) \propto \theta^{2n+2} e^{-\theta^2 \left( \sum_{i=1}^n x_i^2 + 1 \right)} π(θ2x1,,xn)θ2n+2eθ2(i=1nxi2+1)
说明 θ 2 \theta^2 θ2后验分布依旧还是伽马分布,参数 θ 2 \theta^2 θ2 的后验分布为:
θ 2 ∣ x 1 , … , x n ∼ Γ ( n + 2 , ∑ i = 1 n x i 2 + 1 ) \theta^2|x_1,\ldots,x_n \sim \Gamma(n+2, \sum_{i=1}^n x_i^2 + 1) θ2x1,,xnΓ(n+2,i=1nxi2+1) 于是: f ( θ 2 ∣ x 1 , … , x n ) = θ 2 ( n + 1 ) Γ ( n + 2 ) λ n + 2 e − λ θ 2 , λ = ∑ i = 1 n x i 2 + 1 f({\theta}^2|x_1,\ldots,x_n)=\frac{{\theta}^{2(n+1)}}{\Gamma(n+2)}{\lambda}^{n+2}e^{-\lambda {\theta}^2}, \lambda= \sum_{i=1}^n x_i^2 + 1 f(θ2x1,,xn)=Γ(n+2)θ2(n+1)λn+2eλθ2,λ=i=1nxi2+1 f ( θ ∣ x 1 , … , x n ) = { f ( θ 2 ∣ x 1 , … , x n ) θ = θ 2 n + 3 Γ ( n + 2 ) ( ∑ i = 1 n x i 2 + 1 ) n + 2 e − ( ∑ i = 1 n x i 2 + 1 ) θ 2 , θ > 0 − f ( θ 2 ∣ x 1 , … , x n ) θ = − θ 2 n + 3 Γ ( n + 2 ) ( ∑ i = 1 n x i 2 + 1 ) n + 2 e − ( ∑ i = 1 n x i 2 + 1 ) θ 2 , θ < 0 f(\theta|x_1,\ldots,x_n)=\left\{ \begin{array}{ll} f({\theta}^2|x_1,\ldots,x_n)\theta= \frac{{\theta}^{2n+3}}{\Gamma(n+2)}{(\sum_{i=1}^n x_i^2 + 1)}^{n+2}e^{-(\sum_{i=1}^n x_i^2 + 1) {\theta}^2},\theta>0\\\\ -f({\theta}^2|x_1,\ldots,x_n)\theta=- \frac{{\theta}^{2n+3}}{\Gamma(n+2)}{(\sum_{i=1}^n x_i^2 + 1)}^{n+2}e^{-(\sum_{i=1}^n x_i^2 + 1) {\theta}^2},\theta<0 \end{array} \right. f(θx1,,xn)= f(θ2x1,,xn)θ=Γ(n+2)θ2n+3(i=1nxi2+1)n+2e(i=1nxi2+1)θ2,θ>0f(θ2x1,,xn)θ=Γ(n+2)θ2n+3(i=1nxi2+1)n+2e(i=1nxi2+1)θ2,θ<0

基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学生信息管理系统课程设计源码+数据库+文档报告(99分项目)基
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值