复旦432统计学真题解答2025年
七、给定二元函数
f
(
x
,
y
)
=
c
(
e
−
x
2
+
y
2
2
+
x
y
(
x
2
−
y
2
)
e
I
D
(
x
,
y
)
)
f(x,y)=c\left(e^{-\frac{x^2+y^2}{2}}+\frac{xy(x^2-y^2)}{\sqrt{e}}I_{D}(x,y)\right)
f(x,y)=c(e−2x2+y2+exy(x2−y2)ID(x,y))
其中 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D=\{(x,y) \mid x^2+y^2 \leq 1\} D={(x,y)∣x2+y2≤1} , c c c >0。(15分)
(1) 证明: f ( x , y ) > 0 f(x,y) > 0 f(x,y)>0 ;
(2) 设 ( X , Y ) (X,Y) (X,Y) 的联合密度为 f ( x , y ) f(x,y) f(x,y) ,求 c c c 。
(3) 求
X
,
Y
X,Y
X,Y 的边缘分布,求
Cov
(
X
,
Y
)
\text{Cov}(X,Y)
Cov(X,Y) ,
X
X
X 和
Y
Y
Y 是否独立?
Solution:
(1)
(
x
,
y
)
∉
D
(x,y) \notin D
(x,y)∈/D 时显然大于0,
(
x
,
y
)
∈
D
(x,y) \in D
(x,y)∈D 时,令
x
=
ρ
cos
θ
x = \rho\cos\theta
x=ρcosθ ,
y
=
ρ
sin
θ
y = \rho\sin\theta
y=ρsinθ :
f
(
x
,
y
)
=
c
(
e
−
ρ
2
2
+
ρ
2
⋅
sin
θ
cos
θ
(
cos
2
θ
−
sin
2
θ
)
e
)
>
(
1
−
1
2
ρ
2
+
ρ
2
⋅
sin
4
θ
4
e
)
>
c
⋅
(
1
−
1
2
−
1
4
e
)
>
0
\begin{aligned} f(x,y) &= c\left(e^{-\frac{\rho^2}{2}} + \frac{\rho^2 \cdot \sin \theta \cos \theta (\cos^2 \theta - \sin^2 \theta)}{\sqrt{e}}\right)\\ &> \left(1 - \frac{1}{2} \rho^2 + \frac{\rho^2 \cdot \sin 4\theta}{4\sqrt{e}}\right) \\ &> c \cdot \left(1 - \frac{1}{2} - \frac{1}{4\sqrt{e}}\right) \\ &>0 \end{aligned}
f(x,y)=c(e−2ρ2+eρ2⋅sinθcosθ(cos2θ−sin2θ))>(1−21ρ2+4eρ2⋅sin4θ)>c⋅(1−21−4e1)>0
(2)
∫
−
∞
∞
∫
−
∞
∞
f
(
x
,
y
)
d
x
d
y
=
1.
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1.
∫−∞∞∫−∞∞f(x,y)dxdy=1.
我们将积分分为两部分:
(
x
,
y
)
∈
D
(x,y) \in D
(x,y)∈D 和
(
x
,
y
)
∉
D
(x,y) \notin D
(x,y)∈/D 。
对于
(
x
,
y
)
∉
D
(x,y) \notin D
(x,y)∈/D ,
∫
−
∞
∞
∫
−
∞
∞
c
e
−
x
2
+
y
2
2
d
x
d
y
−
∫
D
c
e
−
x
2
+
y
2
2
d
x
d
y
.
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c e^{-\frac{x^2+y^2}{2}} \, dx \, dy - \int_{D} c e^{-\frac{x^2+y^2}{2}} \, dx \, dy.
∫−∞∞∫−∞∞ce−2x2+y2dxdy−∫Dce−2x2+y2dxdy.
对于
(
x
,
y
)
∈
D
(x,y) \in D
(x,y)∈D ,
∫
D
c
(
e
−
x
2
+
y
2
2
+
x
y
(
x
2
−
y
2
)
e
)
d
x
d
y
.
\int_{D} c \left( e^{-\frac{x^2+y^2}{2}} + \frac{xy(x^2-y^2)}{\sqrt{e}} \right) \, dx \, dy.
∫Dc(e−2x2+y2+exy(x2−y2))dxdy.
将这两部分合并,我们得到,
c
∫
−
∞
∞
∫
−
∞
∞
e
−
x
2
+
y
2
2
d
x
d
y
=
1.
c \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} \, dx \, dy = 1.
c∫−∞∞∫−∞∞e−2x2+y2dxdy=1.
令
x
=
r
cos
θ
x = r\cos\theta
x=rcosθ ,
y
=
r
sin
θ
y = r\sin\theta
y=rsinθ ,则
x
2
+
y
2
=
r
2
x^{2}+y^{2}=r^{2}
x2+y2=r2 。
则
r
≥
0
,
0
≤
θ
≤
2
π
r \geq 0,0 \leq \theta \leq 2\pi
r≥0,0≤θ≤2π 。
∫
−
∞
∞
∫
−
∞
∞
e
−
x
2
+
y
2
2
d
x
d
y
=
∫
0
2
π
∫
0
∞
e
−
r
2
2
r
d
r
d
θ
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} \, dx \, dy= \int_{0}^{2\pi}\int_{0}^{\infty} e^{-\frac{r^{2}}{2}}r drd\theta
∫−∞∞∫−∞∞e−2x2+y2dxdy=∫02π∫0∞e−2r2rdrdθ 令
u
=
r
2
u = r^{2}
u=r2 ,
d
u
=
2
r
d
r
du = 2r dr
du=2rdr 。
∫
0
2
π
d
θ
∫
0
∞
e
−
r
2
2
r
d
r
=
∫
0
2
π
d
θ
∫
0
∞
1
2
e
−
u
2
d
u
=
∫
0
2
π
d
θ
[
−
e
−
u
2
]
0
∞
=
∫
0
2
π
d
θ
=
2
π
\int_{0}^{2\pi}d\theta\int_{0}^{\infty} e^{-\frac{r^{2}}{2}}r dr = \int_{0}^{2\pi}d\theta\int_{0}^{\infty}\frac{1}{2}e^{-\frac{u}{2}}du=\int_{0}^{2\pi}d\theta\left[- e^{-\frac{u}{2}}\right]_{0}^{\infty} = \int_{0}^{2\pi}d\theta= 2\pi
∫02πdθ∫0∞e−2r2rdr=∫02πdθ∫0∞21e−2udu=∫02πdθ[−e−2u]0∞=∫02πdθ=2π (也可直接根据二元正态分布的联合密度函数得出), 于是:
c
=
1
2
π
c = \frac{1}{2\pi}
c=2π1
(3) 首先,我们求
X
X
X 的边缘分布。由于
f
(
x
,
y
)
f(x,y)
f(x,y) 关于
y
y
y 对称,所以
X
X
X 的边缘分布为
f
X
(
x
)
=
∫
−
∞
∞
f
(
x
,
y
)
d
y
=
∫
−
∞
∞
1
2
π
(
e
−
x
2
+
y
2
2
+
x
y
(
x
2
−
y
2
)
e
1
D
(
x
,
y
)
)
d
y
.
f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy = \int_{-\infty}^{\infty} \frac{1}{2\pi} \left( e^{-\frac{x^2+y^2}{2}} + \frac{xy(x^2-y^2)}{\sqrt{e}} 1_{D}(x,y) \right) \, dy.
fX(x)=∫−∞∞f(x,y)dy=∫−∞∞2π1(e−2x2+y2+exy(x2−y2)1D(x,y))dy.
由于
x
y
(
x
2
−
y
2
)
e
1
D
(
x
,
y
)
\frac{xy(x^2-y^2)}{\sqrt{e}} 1_{D}(x,y)
exy(x2−y2)1D(x,y) 关于
y
y
y 是奇函数,所以
∫
−
∞
∞
x
y
(
x
2
−
y
2
)
e
1
D
(
x
,
y
)
d
y
=
0.
\int_{-\infty}^{\infty} \frac{xy(x^2-y^2)}{\sqrt{e}} 1_{D}(x,y) \, dy = 0.
∫−∞∞exy(x2−y2)1D(x,y)dy=0.
因此:
f
X
(
x
)
=
1
2
π
∫
−
∞
∞
e
−
x
2
+
y
2
2
d
y
=
1
2
π
e
−
x
2
2
.
f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} \, dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.
fX(x)=2π1∫−∞∞e−2x2+y2dy=2π1e−2x2.
同理,
y
y
y 的边缘分布为:
f
Y
(
y
)
=
1
2
π
e
−
y
2
2
.
f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}.
fY(y)=2π1e−2y2.
由于:
f
Y
(
y
)
f
X
(
x
)
≠
f
(
x
,
y
)
f_Y(y)f_X(x)≠ f(x,y)
fY(y)fX(x)=f(x,y),所以X,Y不独立。
E
(
X
Y
)
=
∫
−
∞
∞
∫
−
∞
∞
x
y
f
(
x
,
y
)
d
x
d
y
=
∫
−
∞
∞
∫
−
∞
∞
x
y
1
2
π
(
e
−
x
2
+
y
2
2
+
x
y
(
x
2
−
y
2
)
e
1
D
(
x
,
y
)
)
d
x
d
y
.
E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) \, dx \, dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \frac{1}{2\pi} \left( e^{-\frac{x^2+y^2}{2}} + \frac{xy(x^2-y^2)}{\sqrt{e}} 1_{D}(x,y) \right) \, dx \, dy.
E(XY)=∫−∞∞∫−∞∞xyf(x,y)dxdy=∫−∞∞∫−∞∞xy2π1(e−2x2+y2+exy(x2−y2)1D(x,y))dxdy.
由于
e
−
x
2
+
y
2
2
e^{-\frac{x^2+y^2}{2}}
e−2x2+y2 关于
x
x
x 和
y
y
y 都是对称的,所以
∫
−
∞
∞
∫
−
∞
∞
x
y
e
−
x
2
+
y
2
2
d
x
d
y
=
0.
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy e^{-\frac{x^2+y^2}{2}} \, dx \, dy = 0.
∫−∞∞∫−∞∞xye−2x2+y2dxdy=0. 令:
x
=
r
cos
θ
x=r\cos\theta
x=rcosθ 和
y
=
r
sin
θ
y=r\sin\theta
y=rsinθ ,积分变为:
∫
0
2
π
∫
0
1
(
r
cos
θ
)
(
r
sin
θ
)
(
r
2
cos
2
θ
−
r
2
sin
2
θ
)
e
r
d
r
d
θ
.
\int_{0}^{2\pi}\int_{0}^{1}\frac{(r\cos\theta)(r\sin\theta)(r^2\cos^2\theta-r^2\sin^2\theta)}{\sqrt{e}}r\,dr\,d\theta.
∫02π∫01e(rcosθ)(rsinθ)(r2cos2θ−r2sin2θ)rdrdθ.
简化被积函数,我们得到:
∫
0
2
π
∫
0
1
r
5
cos
θ
sin
θ
(
cos
2
θ
−
sin
2
θ
)
e
d
r
d
θ
.
\int_{0}^{2\pi}\int_{0}^{1}\frac{r^5\cos\theta\sin\theta(\cos^2\theta-\sin^2\theta)}{\sqrt{e}}\,dr\,d\theta.
∫02π∫01er5cosθsinθ(cos2θ−sin2θ)drdθ.
注意到
cos
θ
sin
θ
(
cos
2
θ
−
sin
2
θ
)
\cos\theta\sin\theta(\cos^2\theta-\sin^2\theta)
cosθsinθ(cos2θ−sin2θ) 是一个奇函数,因此:
∫
0
2
π
cos
θ
sin
θ
(
cos
2
θ
−
sin
2
θ
)
d
θ
=
0.
\int_{0}^{2\pi}\cos\theta\sin\theta(\cos^2\theta-\sin^2\theta)\,d\theta=0.
∫02πcosθsinθ(cos2θ−sin2θ)dθ=0. 所以:
C
O
V
(
X
,
Y
)
=
E
(
X
Y
)
−
E
(
X
)
E
(
Y
)
=
0
COV(X,Y)=E(XY) -E(X)E(Y)=0
COV(X,Y)=E(XY)−E(X)E(Y)=0
八、 打怪物会爆装备1和2,爆出装备1的概率是0.2 ,爆出装备2的概率是 0.2,不获得任何装备的概率是0.6,设
τ
\tau
τ 是集齐装备所用的次数,求
E
τ
E\tau
Eτ ,
V
a
r
τ
Var\tau
Varτ 。(10分)
Solution:
令:
ξ
1
\xi_1
ξ1 表示收集到第一件装备所需的次数,其成功概率为 0.4(因为获得装备1或装备2的概率为 0.2 + 0.2 = 0.4)。
ξ
2
\xi_2
ξ2 表示在收集到第一件装备后,收集到第二件装备所需的次数,其成功概率为 0.2(因为获得第2个装备的概率为 0.2)。
对于几何分布随机变量
ξ
∼
G
e
(
p
)
\xi \sim Ge(p)
ξ∼Ge(p) ,其期望
E
ξ
=
1
p
E\xi = \frac{1}{p}
Eξ=p1 。因此:
E
ξ
1
=
1
0.4
=
2.5
E\xi_1 = \frac{1}{0.4} = 2.5
Eξ1=0.41=2.5,
E
ξ
2
=
1
0.2
=
5
E\xi_2 = \frac{1}{0.2} = 5
Eξ2=0.21=5
E
τ
=
E
ξ
1
+
E
ξ
2
=
2.5
+
5
=
7.5
E\tau = E\xi_1 + E\xi_2 = 2.5 + 5 = 7.5
Eτ=Eξ1+Eξ2=2.5+5=7.5
对于几何分布随机变量
ξ
∼
G
e
(
p
)
\xi \sim Ge(p)
ξ∼Ge(p) ,其方差
V
a
r
ξ
=
1
−
p
p
2
Var\xi = \frac{1-p}{p^2}
Varξ=p21−p 。因此:
V
a
r
ξ
1
=
1
−
0.4
0.
4
2
=
0.6
0.16
=
3.75
V
a
r
ξ
2
=
1
−
0.2
0.
2
2
=
0.8
0.04
=
20
V
a
r
τ
=
V
a
r
ξ
1
+
V
a
r
ξ
2
=
3.75
+
20
=
23.75
\begin{aligned} Var\xi_1 &= \frac{1-0.4}{0.4^2} = \frac{0.6}{0.16} = 3.75\\ Var\xi_2 &= \frac{1-0.2}{0.2^2} = \frac{0.8}{0.04} = 20\\ Var\tau &= Var\xi_1 + Var\xi_2 = 3.75 + 20 = 23.75 \end{aligned}
Varξ1Varξ2Varτ=0.421−0.4=0.160.6=3.75=0.221−0.2=0.040.8=20=Varξ1+Varξ2=3.75+20=23.75 因此,收集到两件装备所需的期望次数为 7.5 次,方差为 23.75。
九、设 X 1 , ⋯ , X n X_1, \cdots, X_n X1,⋯,Xn 独立同分布于连续函数 F F F, 样本 Y i = μ + σ [ − ln F ( X i ) ] − 1 2 Y_i = \mu + \sigma[-\ln F(X_i)]^{-\frac{1}{2}} Yi=μ+σ[−lnF(Xi)]−21 , μ > 0 , σ > 0 \mu>0,\sigma>0 μ>0,σ>0 (15分)
(1) 求 ( μ , σ ) (\mu,\sigma) (μ,σ) 的最大似然估计。
(2) 若
μ
\mu
μ 已知,求
σ
2
\sigma^2
σ2 的充分统计量。
Solution:
(1) 令
Z
i
=
F
(
X
i
)
Z_i = F(X_i)
Zi=F(Xi) ,则
Z
i
∼
U
(
0
,
1
)
Z_i \sim U(0,1)
Zi∼U(0,1) 。
Y
i
=
μ
+
σ
[
−
ln
Z
i
]
−
1
2
Y_i = \mu + \sigma[-\ln Z_i]^{-\frac{1}{2}}
Yi=μ+σ[−lnZi]−21 由于
Z
i
∼
U
(
0
,
1
)
Z_i \sim U(0,1)
Zi∼U(0,1) ,
−
ln
Z
i
-\ln Z_i
−lnZi 服从参数为 1 的指数分布,即
−
ln
Z
i
∼
Exp
(
1
)
-\ln Z_i \sim \text{Exp}(1)
−lnZi∼Exp(1) 。
设
W
i
=
[
−
ln
Z
i
]
−
1
2
W_i = [-\ln Z_i]^{-\frac{1}{2}}
Wi=[−lnZi]−21 :
P
(
w
i
≤
w
)
=
P
(
(
−
ln
z
i
)
−
1
2
≤
w
)
=
P
(
z
i
≤
e
−
w
−
2
)
=
e
−
w
−
2
\begin{align*} P(w_i \leq w) &= P\left((-\ln z_i)^{-\frac{1}{2}} \leq w\right) \\ &= P\left(z_i \leq e^{-w^{-2}}\right) \\ &= e^{-w^{-2}} \end{align*}
P(wi≤w)=P((−lnzi)−21≤w)=P(zi≤e−w−2)=e−w−2
f
w
i
(
w
)
=
2
w
−
3
e
−
w
−
2
,
y
i
=
μ
+
σ
⋅
w
i
f_{w_i}(w) = 2w^{-3} e^{-w^{-2}}, \quad y_i = \mu + \sigma \cdot w_i
fwi(w)=2w−3e−w−2,yi=μ+σ⋅wi
f
Y
i
(
y
i
)
=
f
w
i
(
y
i
−
μ
σ
)
⋅
1
σ
=
2
σ
2
⋅
(
y
i
−
μ
)
−
3
⋅
e
−
(
σ
y
i
−
μ
)
2
f_{Y_i}(y_i) = f_{w_i}\left(\frac{y_i - \mu}{\sigma}\right) \cdot \frac{1}{\sigma} = 2\sigma^2 \cdot (y_i - \mu)^{-3} \cdot e^{-\left(\frac{\sigma}{y_i-\mu}\right)^2}
fYi(yi)=fwi(σyi−μ)⋅σ1=2σ2⋅(yi−μ)−3⋅e−(yi−μσ)2
f
(
y
1
,
⋯
,
y
n
)
=
∏
i
=
1
n
2
σ
2
(
y
i
−
μ
)
−
3
e
−
(
σ
y
i
−
μ
)
2
f(y_1, \cdots, y_n) = \prod_{i = 1}^{n} 2\sigma^2 (y_i - \mu)^{-3} e^{-\left(\frac{\sigma}{y_i-\mu}\right)^2}
f(y1,⋯,yn)=i=1∏n2σ2(yi−μ)−3e−(yi−μσ)2
ln
f
=
∑
i
=
1
n
[
−
3
ln
(
y
i
−
μ
)
−
(
σ
y
i
−
μ
)
2
]
+
2
n
ln
σ
+
n
ln
2
\ln f = \sum_{i = 1}^{n} \left[-3\ln(y_i - \mu) - \left(\frac{\sigma}{y_i-\mu}\right)^2\right] + 2n\ln\sigma + n\ln 2
lnf=i=1∑n[−3ln(yi−μ)−(yi−μσ)2]+2nlnσ+nln2 对
μ
\mu
μ 的偏导数为:
∂
ln
f
∂
μ
=
∑
i
=
1
n
[
3
y
i
−
μ
−
2
σ
2
(
y
i
−
μ
)
3
]
=
0
\frac{\partial \ln f}{\partial \mu} = \sum_{i = 1}^{n} \left[\frac{3}{y_i - \mu} - \frac{2\sigma^2}{(y_i-\mu)^3}\right] = 0
∂μ∂lnf=i=1∑n[yi−μ3−(yi−μ)32σ2]=0
⇒
∑
i
=
1
n
3
(
y
i
−
μ
)
2
−
2
σ
2
(
y
i
−
μ
)
3
=
0
(
1
)
\Rightarrow \sum_{i = 1}^{n} \frac{3(y_i - \mu)^2 - 2\sigma^2}{(y_i - \mu)^3} = 0 \quad (1)
⇒i=1∑n(yi−μ)33(yi−μ)2−2σ2=0(1) 对
σ
\sigma
σ 的偏导数为:
∂
ln
f
∂
σ
=
∑
i
=
1
n
−
2
σ
(
y
i
−
μ
)
2
+
2
n
σ
=
0
\frac{\partial \ln f}{\partial \sigma} = \sum_{i = 1}^{n}\frac{-2\sigma}{(y_i - \mu)^2} + \frac{2n}{\sigma} = 0
∂σ∂lnf=i=1∑n(yi−μ)2−2σ+σ2n=0
⇒
∑
i
=
1
n
1
(
y
i
−
μ
)
2
=
n
σ
2
(
2
)
\Rightarrow \sum_{i = 1}^{n} \frac{1}{(y_i - \mu)^2} = \frac{n}{\sigma^2} \quad (2)
⇒i=1∑n(yi−μ)21=σ2n(2)
设
S
1
(
μ
)
=
∑
i
=
1
n
1
y
i
−
μ
S_1(\mu)=\sum_{i=1}^{n}\frac{1}{y_{i}-\mu}
S1(μ)=∑i=1nyi−μ1 ,
S
2
(
μ
)
=
∑
i
=
1
n
1
(
y
i
−
μ
)
2
S_2(\mu)=\sum_{i=1}^{n}\frac{1}{(y_{i}-\mu)^{2}}
S2(μ)=∑i=1n(yi−μ)21,
S
3
(
μ
)
=
∑
i
=
1
n
1
(
y
i
−
μ
)
3
S_3(\mu)=\sum_{i=1}^{n}\frac{1}{(y_{i}-\mu)^{3}}
S3(μ)=∑i=1n(yi−μ)31 ,则:
3
S
1
(
μ
)
−
2
σ
2
S
3
(
μ
)
=
0
,
S
2
(
μ
)
−
n
σ
2
=
0
3S_1(\mu)-2{\sigma}^2S_3(\mu)=0, S_2(\mu)-\frac{n}{{\sigma}^2}=0
3S1(μ)−2σ2S3(μ)=0,S2(μ)−σ2n=0
μ
,
σ
\mu,\sigma
μ,σ的极大似然估计即为满足上式的值。
(
(
(由于
ln
f
\ln f
lnf关于
μ
,
σ
\mu,\sigma
μ,σ并不单调,所以不能直接取
μ
=
y
(
1
)
\mu=y_{(1)}
μ=y(1)
)
)
)
(2) 根据因子分解定理,如果似然函数可以写成
L
(
σ
2
)
=
g
(
T
(
Y
)
,
σ
2
)
h
(
Y
)
L(\sigma^2) = g(T(Y), \sigma^2)h(Y)
L(σ2)=g(T(Y),σ2)h(Y) 的形式,其中
T
(
Y
)
T(Y)
T(Y) 是样本的函数,
g
g
g 和
h
h
h
是两个函数,那么
T
(
Y
)
T(Y)
T(Y) 是
σ
2
\sigma^2
σ2 的充分统计量。似然函数为:
L
(
σ
2
)
=
∏
i
=
1
n
2
(
y
i
−
μ
)
−
3
e
x
p
{
∑
i
=
1
n
[
−
(
σ
y
i
−
μ
)
2
]
+
2
n
l
n
(
σ
)
}
L(\sigma^2) = \prod_{i=1}^n 2(y_i-\mu)^{-3} exp\{\sum_{i=1}^n[-(\frac{\sigma}{y_i-\mu})^2]+2nln(\sigma)\}
L(σ2)=i=1∏n2(yi−μ)−3exp{i=1∑n[−(yi−μσ)2]+2nln(σ)} 这里,
T
(
Y
)
=
∑
i
=
1
n
1
(
y
i
−
μ
)
2
T(Y) = \sum_{i=1}^n \frac{1}{(y_i - \mu)^2}
T(Y)=∑i=1n(yi−μ)21 是
σ
2
\sigma^2
σ2 的充分统计量。
十、设总体为对数正态分布 L N ( μ , σ 2 ) LN(\mu, \sigma^2) LN(μ,σ2) ,简单样本为 X 1 , ⋯ , X n X_1, \cdots, X_n X1,⋯,Xn。(15分)
(1) 求 μ \mu μ 的矩估计、最大似然估计。
(2) 求
θ
=
e
μ
+
1
2
\theta = e^{\mu + \frac{1}{2}}
θ=eμ+21 的最大似然估计,并分析其是否无偏。
Solution:
(1) 对于对数正态分布
L
N
(
μ
,
σ
2
)
LN(\mu, \sigma^2)
LN(μ,σ2) ,其均值
E
(
X
)
=
e
μ
+
σ
2
2
E(X) = e^{\mu + \frac{\sigma^2}{2}}
E(X)=eμ+2σ2 。样本均值
X
ˉ
\bar{X}
Xˉ 可作为
E
(
X
)
E(X)
E(X) 的估计,因此:
X
ˉ
=
e
μ
+
σ
2
2
\bar{X} = e^{\mu + \frac{\sigma^2}{2}}
Xˉ=eμ+2σ2
解出
μ
\mu
μ 得到矩估计:
μ
1
^
=
ln
(
X
ˉ
)
−
σ
2
2
\hat{\mu1} = \ln(\bar{X}) - \frac{\sigma^2}{2}
μ1^=ln(Xˉ)−2σ2
L
(
μ
,
σ
)
=
∏
i
=
1
n
1
X
i
σ
2
π
e
−
(
ln
X
i
−
μ
)
2
2
σ
2
L(\mu, \sigma) = \prod_{i=1}^n \frac{1}{X_i \sigma \sqrt{2\pi}} e^{-\frac{(\ln X_i - \mu)^2}{2\sigma^2}}
L(μ,σ)=i=1∏nXiσ2π1e−2σ2(lnXi−μ)2
ln
L
(
μ
,
σ
)
=
−
n
ln
(
σ
)
−
n
2
ln
(
2
π
)
−
∑
i
=
1
n
(
ln
X
i
−
μ
)
2
2
σ
2
−
∑
i
=
1
n
ln
X
i
\ln L(\mu, \sigma) = -n\ln(\sigma) - \frac{n}{2}\ln(2\pi) - \sum_{i=1}^n \frac{(\ln X_i - \mu)^2}{2\sigma^2} - \sum_{i=1}^n \ln X_i
lnL(μ,σ)=−nln(σ)−2nln(2π)−i=1∑n2σ2(lnXi−μ)2−i=1∑nlnXi 对
μ
\mu
μ 求偏导数:
∂
ln
L
∂
μ
=
∑
i
=
1
n
ln
X
i
−
μ
σ
2
=
0
μ
^
MLE
=
1
n
∑
i
=
1
n
ln
X
i
\begin{aligned} \frac{\partial \ln L}{\partial \mu} &= \sum_{i=1}^n \frac{\ln X_i - \mu}{\sigma^2} = 0 \\ \hat{\mu}_{\text{MLE}} &= \frac{1}{n} \sum_{i=1}^n \ln X_i \end{aligned}
∂μ∂lnLμ^MLE=i=1∑nσ2lnXi−μ=0=n1i=1∑nlnXi
(2) 由极大似然估计的不变性:若
(
μ
^
,
σ
^
)
(\hat{\mu}, \hat{\sigma})
(μ^,σ^) 是
(
μ
,
σ
)
(\mu, \sigma)
(μ,σ) 的极大似然估计,则对于任何函数
T
(
μ
,
σ
)
T(\mu, \sigma)
T(μ,σ) ,
T
T
T 的极大似然估计为
T
(
μ
^
,
σ
^
)
T(\hat{\mu}, \hat{\sigma})
T(μ^,σ^) 。因此,
θ
\theta
θ 的最大似然估计为:
θ
^
MLE
=
e
μ
^
+
1
2
\hat{\theta}_{\text{MLE}} = e^{\hat{\mu} + \frac{1}{2}}
θ^MLE=eμ^+21,由于
μ
^
MLE
\hat{\mu}_{\text{MLE}}
μ^MLE 是
μ
\mu
μ 的无偏估计,我们有:
E
(
μ
^
MLE
)
=
μ
E(\hat{\mu}_{\text{MLE}}) = \mu
E(μ^MLE)=μ。
E
(
e
μ
)
>
e
E
(
μ
)
=
e
μ
E(e^{\mu})>e^{E(\mu)}=e^{\mu}
E(eμ)>eE(μ)=eμ所以
θ
\theta
θ不是无偏估计。
十一、设随机变量
X
X
X 的概率密度函数为:
f
(
x
;
θ
)
=
{
θ
x
θ
−
1
,
0
<
x
<
1
,
0
,
其他
f(x; \theta) = \begin{cases} \theta x^{\theta -1}, & 0 < x < 1, \\ 0, & \text{其他} \end{cases}
f(x;θ)={θxθ−1,0,0<x<1,其他
设
X
1
,
X
2
X_1, X_2
X1,X2 来自该总体的样本,考虑假设检验问题:
H
0
:
θ
=
1
↔
H
1
:
θ
=
2
,
H_0: \theta = 1 \leftrightarrow H_1: \theta = 2,
H0:θ=1↔H1:θ=2,
其否定域为
W
=
{
(
X
1
,
X
2
)
∣
X
1
X
2
>
3
4
}
W = \{(X_1, X_2) \mid X_1 X_2 > \frac{3}{4}\}
W={(X1,X2)∣X1X2>43} ,求第一、二类错误的概率。(15分)
Solution:
1.第一类错误:弃真。即在
θ
=
1
\theta = 1
θ=1 的情况下,
X
1
X
2
>
3
4
X_1 X_2 > \frac{3}{4}
X1X2>43 的概率。
当
θ
=
1
\theta = 1
θ=1 时,
X
X
X 的概率密度函数为
f
(
x
;
1
)
=
1
f(x; 1) = 1
f(x;1)=1 ,
0
<
x
<
1
0 < x < 1
0<x<1 。因此,
X
1
X_1
X1 和
X
2
X_2
X2 都是
(
0
,
1
)
(0, 1)
(0,1) 上的均匀分布,
3
4
x
1
<
1
\frac{3}{4x_1}<1
4x13<1, 求出
x
1
>
3
4
x_1> \frac{3}{4}
x1>43
P
(
X
1
X
2
>
3
4
,
θ
=
1
)
=
∫
3
4
1
∫
3
4
x
1
1
1
d
x
2
d
x
1
=
1
4
+
3
ln
3
4
−
3
ln
2
2
P(X_1 X_2 > \frac{3}{4}, \theta = 1) = \int_{\frac{3}{4}}^1 \int_{\frac{3}{4x_1}}^1 1 \, dx_2 \, dx_1 =\frac{1}{4}+\frac{3 \ln 3}{4}-\frac{3\ln 2}{2}
P(X1X2>43,θ=1)=∫431∫4x1311dx2dx1=41+43ln3−23ln2
因此,第一类错误的概率为:
α
=
1
4
+
3
ln
3
4
−
3
ln
2
2
\alpha =\frac{1}{4}+\frac{3 \ln 3}{4}-\frac{3\ln 2}{2}
α=41+43ln3−23ln2
2.第二类错误:取伪,即在
H
1
H_1
H1 为真时接受
H
0
H_0
H0 的概率。即在
θ
=
2
\theta = 2
θ=2 的情况下,
X
1
X
2
≤
3
4
X_1 X_2 \leq \frac{3}{4}
X1X2≤43 的概率。
当
x
1
<
3
4
x_1 < \frac{3}{4}
x1<43 时,
x
2
x_2
x2 的积分范围是
(
0
,
1
)
(0, 1)
(0,1),而当
x
1
≥
3
4
x_1 \geq \frac{3}{4}
x1≥43 时,
x
2
x_2
x2 的积分范围是
(
0
,
3
4
x
1
)
(0, \frac{3}{4x_1})
(0,4x13) 。因此:
P
(
X
1
X
2
≤
3
4
,
θ
=
2
)
=
∫
0
3
4
2
x
1
d
x
1
+
∫
3
4
1
9
8
x
1
d
x
1
=
9
16
+
9
ln
2
4
−
9
ln
3
8
P(X_1 X_2 \leq \frac{3}{4}, \theta = 2) = \int_0^{\frac{3}{4}} 2x_1 \, dx_1 + \int_{\frac{3}{4}}^1 \frac{9}{8x_1} \, dx_1=\frac{9}{16}+\frac{9\ln2}{4}-\frac{9\ln3}{8}
P(X1X2≤43,θ=2)=∫0432x1dx1+∫4318x19dx1=169+49ln2−89ln3 因此,第二类错误的概率为:
β
=
9
16
+
9
ln
2
4
−
9
ln
3
8
\beta =\frac{9}{16}+\frac{9\ln2}{4}-\frac{9\ln3}{8}
β=169+49ln2−89ln3
十二、设总体 X X X 满足 P ( X > x ∣ θ ) = e − ( θ x ) k P(X > x | \theta) = e^{-(\theta x)^k} P(X>x∣θ)=e−(θx)k ,参数 θ \theta θ 的先验分布满足 θ k ∼ Γ ( α , β ) \theta^k\sim \Gamma(\alpha, \beta) θk∼Γ(α,β) ,这里 α = 2 \alpha = 2 α=2 , β = 1 \beta = 1 β=1 , k = 2 k = 2 k=2
,给定样本
x
1
,
…
,
x
n
x_1, \ldots, x_n
x1,…,xn ,求
θ
\theta
θ 的后验分布。(15分)
Solution:
由于
P
(
X
>
x
∣
θ
)
=
e
−
(
θ
x
)
2
P(X > x | \theta) = e^{-(\theta x)^2}
P(X>x∣θ)=e−(θx)2 ,我们可以得到
P
(
X
≤
x
∣
θ
)
=
1
−
e
−
(
θ
x
)
2
P(X \leq x | \theta) = 1 - e^{-(\theta x)^2}
P(X≤x∣θ)=1−e−(θx)2 。
f
(
x
i
∣
θ
)
=
d
d
x
i
P
(
X
≤
x
i
∣
θ
)
=
2
θ
2
x
i
e
−
(
θ
x
i
)
2
f(x_i | \theta) = \frac{d}{dx_i} P(X \leq x_i | \theta) = 2 \theta^2 x_i e^{-(\theta x_i)^2}
f(xi∣θ)=dxidP(X≤xi∣θ)=2θ2xie−(θxi)2 因此:
L
(
x
1
,
…
,
x
n
∣
θ
)
=
∏
i
=
1
n
2
θ
2
x
i
e
−
(
θ
x
i
)
2
=
2
n
θ
2
n
(
∏
i
=
1
n
x
i
)
e
−
∑
i
=
1
n
(
θ
x
i
)
2
L( x_1, \ldots, x_n|\theta ) = \prod_{i=1}^n 2 \theta^2 x_i e^{-(\theta x_i)^2} = 2^n \theta^{2n} \left( \prod_{i=1}^n x_i \right) e^{-\sum_{i=1}^n (\theta x_i)^2}
L(x1,…,xn∣θ)=i=1∏n2θ2xie−(θxi)2=2nθ2n(i=1∏nxi)e−∑i=1n(θxi)2 参数
θ
2
\theta^2
θ2 的先验分布为:
θ
2
∼
Γ
(
2
,
1
)
\theta^2 \sim \Gamma(2, 1)
θ2∼Γ(2,1)
g
(
θ
2
)
=
1
2
Γ
(
2
)
(
θ
2
)
2
−
1
e
−
1
⋅
θ
2
=
θ
2
e
−
θ
2
g(\theta^2) = \frac{1^2}{\Gamma(2)} (\theta^2)^{2-1} e^{-1 \cdot \theta^2} = \theta^2 e^{-\theta^2}
g(θ2)=Γ(2)12(θ2)2−1e−1⋅θ2=θ2e−θ2
根据贝叶斯定理,后验分布
π
(
θ
2
∣
x
1
,
…
,
x
n
)
\pi(\theta^2|x_1,\ldots,x_n)
π(θ2∣x1,…,xn) 与似然函数和先验分布的乘积成正比:
π
(
θ
2
∣
x
1
,
…
,
x
n
)
∝
L
(
θ
∣
x
1
,
…
,
x
n
)
⋅
g
(
θ
2
)
\pi(\theta^2|x_1,\ldots,x_n) \propto L(\theta|x_1,\ldots,x_n) \cdot g(\theta^2)
π(θ2∣x1,…,xn)∝L(θ∣x1,…,xn)⋅g(θ2)
代入似然函数和先验分布,得到:
π
(
θ
2
∣
x
1
,
…
,
x
n
)
∝
2
n
θ
2
n
(
∏
i
=
1
n
x
i
)
e
−
∑
i
=
1
n
(
θ
x
i
)
2
⋅
θ
2
e
−
θ
2
\begin{aligned} \pi(\theta^2|x_1,\ldots,x_n) \propto 2^n \theta^{2n} \left( \prod_{i=1}^n x_i \right) e^{-\sum_{i=1}^n (\theta x_i)^2} \cdot \theta^2 e^{-\theta^2} \end{aligned}
π(θ2∣x1,…,xn)∝2nθ2n(i=1∏nxi)e−∑i=1n(θxi)2⋅θ2e−θ2
π
(
θ
2
∣
x
1
,
…
,
x
n
)
∝
θ
2
n
+
2
e
−
θ
2
(
∑
i
=
1
n
x
i
2
+
1
)
\pi(\theta^2|x_1,\ldots,x_n) \propto \theta^{2n+2} e^{-\theta^2 \left( \sum_{i=1}^n x_i^2 + 1 \right)}
π(θ2∣x1,…,xn)∝θ2n+2e−θ2(∑i=1nxi2+1)
说明
θ
2
\theta^2
θ2后验分布依旧还是伽马分布,参数
θ
2
\theta^2
θ2 的后验分布为:
θ
2
∣
x
1
,
…
,
x
n
∼
Γ
(
n
+
2
,
∑
i
=
1
n
x
i
2
+
1
)
\theta^2|x_1,\ldots,x_n \sim \Gamma(n+2, \sum_{i=1}^n x_i^2 + 1)
θ2∣x1,…,xn∼Γ(n+2,i=1∑nxi2+1) 于是:
f
(
θ
2
∣
x
1
,
…
,
x
n
)
=
θ
2
(
n
+
1
)
Γ
(
n
+
2
)
λ
n
+
2
e
−
λ
θ
2
,
λ
=
∑
i
=
1
n
x
i
2
+
1
f({\theta}^2|x_1,\ldots,x_n)=\frac{{\theta}^{2(n+1)}}{\Gamma(n+2)}{\lambda}^{n+2}e^{-\lambda {\theta}^2}, \lambda= \sum_{i=1}^n x_i^2 + 1
f(θ2∣x1,…,xn)=Γ(n+2)θ2(n+1)λn+2e−λθ2,λ=i=1∑nxi2+1
f
(
θ
∣
x
1
,
…
,
x
n
)
=
{
f
(
θ
2
∣
x
1
,
…
,
x
n
)
θ
=
θ
2
n
+
3
Γ
(
n
+
2
)
(
∑
i
=
1
n
x
i
2
+
1
)
n
+
2
e
−
(
∑
i
=
1
n
x
i
2
+
1
)
θ
2
,
θ
>
0
−
f
(
θ
2
∣
x
1
,
…
,
x
n
)
θ
=
−
θ
2
n
+
3
Γ
(
n
+
2
)
(
∑
i
=
1
n
x
i
2
+
1
)
n
+
2
e
−
(
∑
i
=
1
n
x
i
2
+
1
)
θ
2
,
θ
<
0
f(\theta|x_1,\ldots,x_n)=\left\{ \begin{array}{ll} f({\theta}^2|x_1,\ldots,x_n)\theta= \frac{{\theta}^{2n+3}}{\Gamma(n+2)}{(\sum_{i=1}^n x_i^2 + 1)}^{n+2}e^{-(\sum_{i=1}^n x_i^2 + 1) {\theta}^2},\theta>0\\\\ -f({\theta}^2|x_1,\ldots,x_n)\theta=- \frac{{\theta}^{2n+3}}{\Gamma(n+2)}{(\sum_{i=1}^n x_i^2 + 1)}^{n+2}e^{-(\sum_{i=1}^n x_i^2 + 1) {\theta}^2},\theta<0 \end{array} \right.
f(θ∣x1,…,xn)=⎩
⎨
⎧f(θ2∣x1,…,xn)θ=Γ(n+2)θ2n+3(∑i=1nxi2+1)n+2e−(∑i=1nxi2+1)θ2,θ>0−f(θ2∣x1,…,xn)θ=−Γ(n+2)θ2n+3(∑i=1nxi2+1)n+2e−(∑i=1nxi2+1)θ2,θ<0