机器学习
Kai93
好学若饥,谦卑若愚
展开
-
机器学习基本概念
基本概念:特征向量,分类,回归,监督学习,非监督学习,半监督学习特征向量(features/feature vector):属性的集合,通常用一个向量来表示,附属于一个实例。分类 (classification): 目标标记为类别型数据。回归(regression):目标标记为连续型数值。监督学习(supervised learning): 训练集有类别标记。非监督学习(unsupervised l原创 2017-07-27 11:04:26 · 351 阅读 · 0 评论 -
决策树(Decision Tree)
基本概念 决策树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。决策树是机器学习中分类方法中的一个重要算法 决策树归纳算法 (ID3) 信息获取量(Information Gain):Gain(A) = Info(D) - Infor_A(D)。也就是通过A来作为节点分类获取了多少信息。 依原创 2017-07-27 11:33:09 · 520 阅读 · 0 评论 -
KNN算法
定义:KNN算法,即邻近算法,或者说K最近邻分类算法 算法步骤 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已知实例 根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别 关于距离 可以为欧几里得距离(Euclidean distance), 值(cos), 相关度原创 2017-07-28 08:32:10 · 338 阅读 · 0 评论