SAS
文章平均质量分 82
kaiming0000
这个作者很懒,什么都没留下…
展开
-
单因素重复测量方差分析原理和SAS代码实现
*repeated语句指定有3个时间点,(0 3 7)表示写上时间;如果不写,默认的时间间隔是等距的,而此例是非等距的。nouni表示不输出单变量分析结果,因为对于重复测量分析,单变量分析意义不大*//*model语句指定3个因变量,即 t0 t5 t10,由于是单组的,因此不存在自变量,自变量也就不指定,summary输出各时间点与对照时间点的比较结果*//*如果我们想进一步了解存在什么样的趋势,*//* polynomial来实现趋势的检验*//*单组重复测量方差分析程序*//*首先写入数据*/原创 2024-01-18 22:54:45 · 1215 阅读 · 1 评论 -
多组重复测量方差分析原理和SAS代码实现
Group:p=0.3130,表明,时间点1到时间点2三条线变化趋势一样的,也就是下面三条线平行。Group:p=0.0749,表明,时间点3到时间点2三条线变化趋势一样的,也就是下面三条线平行。Group:p=0.7665,从2次项的曲线趋势来看,三组人收缩压随时间变化趋势无明显差异。Mean: p=0.0218,表明,时间点3与时间点1的收缩压变化有统计学意义。Mean: p=0.0613,表明,时间点2与时间点1的收缩压无统计学意义。contrast(1)表示后2个时间点分别与第1时间点比较,原创 2024-01-19 22:27:55 · 1526 阅读 · 0 评论 -
流行病学研究中基线表格的SAS宏
首先所有的变量必须为数值型变量,其中对于分类变量需要利用proc format过程步定义变量输出格式,对于分析变量,-99定义为此变量的项目名称,比如-99=’性别’。本文以2009年中国健康与营养调查数据为例,将研究对象按照其自报家务体力活动水平的四分位数分为Q1、Q2、Q3、Q4四组,对其基线特征进行描述,即分组变量为家务体力活动水平,预分析的基线特征变量包括分类变量(省份和性别)和连续性变量((包含所有分析变量为分类变量的结果)和“lianxu” (包含所有分析变量为连续变量的结果)两个数据集。原创 2024-01-15 10:22:49 · 1596 阅读 · 0 评论 -
SAS logistic回归模型如何计算校正比例?
在流行病学研究中,在研究两种因素的关联性研究时,通常在论文的表1时,往往会根据暴露因素进行分组,然后分析不同暴露组的基本特征。原创 2024-01-14 17:27:35 · 1301 阅读 · 1 评论 -
SAS线性回归模型如何计算校正均值?
在流行病学研究中,在研究两种因素的关联性研究时,通常在论文的表1时,往往会根据暴露因素进行分组,然后分析不同暴露组的基本特征,这时候。上表的备注说:除年龄、地区外,其余各项数据均调整了年龄和地区,也就是说此表年龄是真实值,而其他为校正值,比如。/*在数据库中自变量:sex,因变量:BMI,混杂因素:地区、age*//*本例的目的计算不同性别的BMI,并且同时校正地区和年龄;/*这里可以看到数据导入成功,并且中文变量名也设置成功了*/不同性别的BMI的校正均值和置信区间*//*变量名可以设定为中文*/原创 2024-01-14 10:22:21 · 711 阅读 · 1 评论