单因素重复测量方差分析原理和SAS代码实现

重复测量设计:就是对研究对象某指标进行重复测量,最常见的情况是在前、后分别测量1次,又称为前后测量;当测量次数>=3时,即为重复测量设计。一般采取的统计学方法是重复测量方差分析。

重复测量设计包括单组重复测量设计和多组重复测量设计。

应用条件:要求因变量符合

  1. 正态性
  2. 方差齐性(针对于多组的情况,因为单组只有一个方差);
  3. 另外还需满足球形性,否则需要校正;不满足球形性,可采用以下两种方法:
  1. G-G校正和H-F校正;
  2. 使用多变量方差分析结果

这里建议大家可以直接使用多变量方差分析的结果。

  1. 单组重复测量设计

设计形式如下:没有分组,只是对每个人进行重复测量多次

ID

T0

T1

T2

T3

1

2

3

4

案例:某研究者为研究高强度间歇运动对收缩压变化的影响,招募了5名参与者,要求在参与者每天进行10分钟的高强度间歇运动,分别在基线、第3周、第7周测量血压。

具体如下:

ID

T0

T3

T7

1

130

125

124

2

120

119

117

3

140

130

120

4

110

110

90

5

100

100

99

/*首先写入数据*/

data dan;

 do id=1 to 5;

  input t0 t3 t7@@;

  output;

 end;

 cards;

130 125 124

120 119 117

140 130 120

110 110 90

100 100 99

;

run;

proc print;quit;

/*单组重复测量方差分析程序*/

proc glm data=dan;

 model t0 t3 t7=/nouni;

/*model语句指定3个因变量,即 t0 t5 t10,

 由于是单组的,因此不存在自变量,自变量也就不指定,

nouni表示不输出单变量分析结果,因为对于重复测量分析,单变量分析意义不大*/

repeated time 3(0 3 7) contrast(1)/printe summary;

/*repeated语句指定有3个时间点,(0 3 7)表示写上时间;如果不写,默认的时间间隔是等距的,而此例是非等距的

contrast(1)表示后2个时间点分别与第1时间点比较,

printe输出球性检验,

summary输出各时间点与对照时间点的比较结果*/

run;

1.下面是基本描述

2.下面给出了球形检验和多变量方差分析结果

3.下面给出的是单变量方差分析结果

结果解释:

这里由于满足球形性,因此选择未调整的p=0.0491<0.05,说明血压时间变化有统计学意义。

4.最后给出后两个时间点分别与对照时间点比较的结果。

/*如果我们想进一步了解存在什么样的趋势,*/

/*可以通过在repeated语句中指定polynomial来实现。*/

proc glm data=dan;

 model t0 t3 t7=/nouni;

repeated time 3(0 3 7) polynomial/printe summary;

/* polynomial来实现趋势的检验*/

run;

从结果来看,时间的1次项和2次项均无意义。

今天的分享先到这里,下期分享多组重复测量方差分析

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kaiming0000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值