自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 亚组分析、P交互、P趋势是什么?如何计算呢?

(2)先将age变量编码为1、2、3、4,然后计算每一组的中位数,本例计算的中位数为。,因此将原来的1、2、3、4替换成。/,再作为等级变量纳入模型,计算出的P值就是P趋势,P趋势的方向是正向还是反向,可以看估计的。(1)将age变量编码为1、2、3、4,作为等级变量纳入模型,计算出的P值就是P趋势,P趋势的方向是正向还是反向,可以看估计的。自变量:sex(性别),age(年龄),ph.ecog(ECOG评分),wt.loss(过去六个月的体重减轻)这时候就需要计算P趋势值了。这时候就需要计算P交互值了。

2024-01-29 17:28:40 3936 1

原创 R语言批量把数值变量和因子变量的互转

data[,a]<-lapply(data[,a],as.numeric)#转数值。data[,a]<-lapply(data[,a],as.factor)#转因子。a<-c("inst","status","sex")#填入需要转化的变量名。[c(1,3,5)]){# 1,3,5代表第1列,第3列,第5列。#inst/status/sex为数值型,分别在第1列,第3列,第5列。#假设我们想转化inst/status/sex/三个变量的类型。#第1是知道需要转化的变量在哪几列;#第2知道需要转化的变量名。

2024-01-22 14:41:52 1090

原创 多组重复测量方差分析原理和SAS代码实现

Group:p=0.3130,表明,时间点1到时间点2三条线变化趋势一样的,也就是下面三条线平行。Group:p=0.0749,表明,时间点3到时间点2三条线变化趋势一样的,也就是下面三条线平行。Group:p=0.7665,从2次项的曲线趋势来看,三组人收缩压随时间变化趋势无明显差异。Mean: p=0.0218,表明,时间点3与时间点1的收缩压变化有统计学意义。Mean: p=0.0613,表明,时间点2与时间点1的收缩压无统计学意义。contrast(1)表示后2个时间点分别与第1时间点比较,

2024-01-19 22:27:55 1625

原创 R语言的ggplot2绘制分组折线图?

"C:/Users/12974/Desktop/百度经验/03图形绘制/03R绘制分组折线图/data.csv"#表示用lancet里面的颜色随机填充线条。#表示用lancet里面的颜色随机填充线条。#表示用lancet里面的颜色随机填充线条。#表示用lancet里面的颜色随机填充线条。#表示用lancet里面的颜色随机填充线条。#表示用lancet里面的颜色随机填充线条。#表示用lancet里面的颜色随机填充线条。#表示用lancet里面的颜色随机填充线条。#绘制group=1和group=2。

2024-01-19 15:13:11 2406

原创 单因素重复测量方差分析原理和SAS代码实现

*repeated语句指定有3个时间点,(0 3 7)表示写上时间;如果不写,默认的时间间隔是等距的,而此例是非等距的。nouni表示不输出单变量分析结果,因为对于重复测量分析,单变量分析意义不大*//*model语句指定3个因变量,即 t0 t5 t10,由于是单组的,因此不存在自变量,自变量也就不指定,summary输出各时间点与对照时间点的比较结果*//*如果我们想进一步了解存在什么样的趋势,*//* polynomial来实现趋势的检验*//*单组重复测量方差分析程序*//*首先写入数据*/

2024-01-18 22:54:45 1246 1

原创 医学统计学常用的单因素统计学方法及SAS代码实现

今天介绍一下初学医学统计学常见的单因素方法以及应用条件,在医学统计学中,常见的两种设计是完全随机设计和配对设计,研究目的往往包括两种,样本均数的比较和样本率的比较。另外,需要注意的是,分类变量的两两比较是将原始数据进行分割,比如分组变量为1、2、3组,在做两两比较的时候,分别拿出1/2、1/3、2/3的数据进行比较,但需要进行。/*需要说明的是:两两比较的思想是先算出每个区组里面个案的秩次,然后采用proc glm里面的lsmeans进行两两比较*/分组后因变量的均值和标准差====*/

2024-01-17 21:16:57 1322

原创 R绘制单纯堆积 按比例堆积和分散柱状图

"C:/Users/12974/Desktop/百度经验/01简书/02R语言绘分组簇状柱状图/R绘制单纯堆积 按比例堆积和分散柱状图/data.csv""C:/Users/12974/Desktop/百度经验/01简书/02R语言绘分组簇状柱状图/R绘制单纯堆积 按比例堆积和分散柱状图"上一期已经分享了R如何绘制多组堆积簇状柱状图,其实上一期的默认的是单纯堆积图,这一期将进一步区别。##下面这个是设置柱状堆积块,每一块的颜色,因为前面是用的疾病。##fill= 代表每个图里面的柱状堆积块的分组,

2024-01-16 11:59:28 1591 1

原创 流行病学研究中基线表格的SAS宏

首先所有的变量必须为数值型变量,其中对于分类变量需要利用proc format过程步定义变量输出格式,对于分析变量,-99定义为此变量的项目名称,比如-99=’性别’。本文以2009年中国健康与营养调查数据为例,将研究对象按照其自报家务体力活动水平的四分位数分为Q1、Q2、Q3、Q4四组,对其基线特征进行描述,即分组变量为家务体力活动水平,预分析的基线特征变量包括分类变量(省份和性别)和连续性变量((包含所有分析变量为分类变量的结果)和“lianxu” (包含所有分析变量为连续变量的结果)两个数据集。

2024-01-15 10:22:49 1636

原创 SAS logistic回归模型如何计算校正比例?

在流行病学研究中,在研究两种因素的关联性研究时,通常在论文的表1时,往往会根据暴露因素进行分组,然后分析不同暴露组的基本特征。

2024-01-14 17:27:35 1326 1

原创 SAS线性回归模型如何计算校正均值?

在流行病学研究中,在研究两种因素的关联性研究时,通常在论文的表1时,往往会根据暴露因素进行分组,然后分析不同暴露组的基本特征,这时候。上表的备注说:除年龄、地区外,其余各项数据均调整了年龄和地区,也就是说此表年龄是真实值,而其他为校正值,比如。/*在数据库中自变量:sex,因变量:BMI,混杂因素:地区、age*//*本例的目的计算不同性别的BMI,并且同时校正地区和年龄;/*这里可以看到数据导入成功,并且中文变量名也设置成功了*/不同性别的BMI的校正均值和置信区间*//*变量名可以设定为中文*/

2024-01-14 10:22:21 755 1

原创 R语言的ggplot2如何设置x轴和y轴的范围和刻度

seq(最小值,最大值,间距);这样做的好处就是对于有规律的刻度,不用自己写那么多数。今天突然发现用R语言的ggplot2给x轴和y轴设置刻度,建议用seq()函数。#x轴刻度 seq(30,90,5)函数, 分别是最小值30,最大值90,间距5。#y轴刻度,seq(0,2,0.2)函数,分别是最小值0,最大值2,间距0.2。可以观察图1和下面两幅图的区别,看看刻度如何变化的。比如我想设置范围30~90,刻度是5。#下面代码设置x轴刻度和标签。#下面代码设置y轴刻度和标签。

2024-01-13 18:40:11 19608 1

原创 R绘制基于Cox回归模型的限制性立方样条图

R绘制基于Cox回归模型的限制性立方样条图。

2024-01-13 17:02:59 3238 2

原创 R包survival拟合cox模型模型出现“Error in `[.default`(y, , 3) : 下标出界”的错误

总结:经过对比,我发现cph拟合模型时,要求结局变量在数据库中必须是数值变量,否则会出错。今天利用R拟合Cox回归模型时候,意外发现模型出错?希望我的经验可以帮助到大家。

2024-01-13 13:21:58 1206

原创 R绘制线性回归限制性立方样条图

接上一期关于logistic回归的限制性立方样条,本期介绍基于线性回归模型的限制性立方样条图。变量要求:x为连续性变量,y为连续性变量。其他协变量既可以是分类变量,也可以是连续变量。今天展示的是年龄对BMI的影响,自变量因变量协变量ageBMI地区、sex、睡眠时间同样的,直接看数据形式和最终的效果图:数据情况:这里展示前几行结果图如下:.libPaths()#查看R包位置##这里改成自己电脑的路径setwd("C:/Users/12974/Desktop/百度经验/简书/R绘制限制性立方样条图")#设置工

2024-01-12 19:07:00 2805 3

原创 R语言的ggplot2绘制多个分组簇状柱状图

今天要分享的是ggplot2去绘制多个分组簇状柱状图,话不多说,现在开始吧:老规矩,还是先看数据和最终的效果图,进行解释后,再说明如何绘制数据情况最终图情况可以明显看到,图代表的意思是不同年龄组、性别的高血压和糖尿病的患病率年龄是x轴的分组,性别是堆积块的分组,疾病是分页的分组(也就是高血压一张图,糖尿病一张图),图中的数据是患病率。所以,画图的前提是先把数据整理成4列,然后自己分清每一列变量代表哪里,最好,自己手画一下大概的情况,接着再进行画图。下面是具体的操作流程:注意:R语言里面 # 代表的是备注我出

2024-01-11 11:00:31 3190 2

原创 R绘制logistic回归限制性立方样条图

通常的结果是一条曲线。通过曲线可以判断转折点。

2024-01-11 10:39:49 2829 6

线性、logistic、cox限制性立方样条图使用的数据

线性、logistic、cox限制性立方样条图使用的数据

2024-01-23

R绘制线性回归限制性立方样条图.R R语言代码

R绘制线性回归限制性立方样条图.R R语言代码

2024-01-23

R绘制logistic回归限制性立方样条图.R R语言代码

R绘制logistic回归限制性立方样条图.R R语言代码

2024-01-23

R绘制cox回归限制性立方样条图.R R语言的代码

R绘制cox回归限制性立方样条图.R R语言的代码

2024-01-23

SAS实现流行病学关联性研究基线表格-SAS宏和原始数据

流行病学关联性研究中,经常会进行描述统计,本宏的开发目的便是快速实现基线表格的统计描述;如何使用本宏,介绍的视频已经上传到个人视频中。当分组变量为三组及以上时,可以使用本宏实现,有兴趣的可以查看免费下载。

2024-01-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除