【跟月影学可视化】学习笔记 41 篇(完结)

文章是关于‘跟月影学可视化’课程的学习笔记,包括图形基础、数学概念、视觉效果、性能优化、数据处理和设计原则等内容。提供了162个示例和41篇博客笔记,涵盖了从2D到3D图形绘制,以及使用各种工具和库如SVG、WebGL、D3.js等进行数据图表和地理信息可视化的实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

【跟月影学可视化】专栏学习笔记。

个人学习笔记源码:https://github.com/kaimo313/visual-learning-demo

一共做了 162 个学习示例以及 41 篇博客学习笔记,要深入学习该课程请支持正版,个人笔记仅供参考。
在这里插入图片描述

笔记目录

可视化常用工具集

基本图形

基础图表

  • 图表库:EChartsChart.jsHighchartsAntV G2
  • 使用 SpriteJS 作为底层图形库,可以使用:QCharts
  • 移动端设备渲染图表:AntV F2
  • 绘制更加灵活的图表,可以选择数据驱动框架:D3.js
  • Vega:基于 JSON 规范的可视化语法,以声明式的方式来绘制各种图表。(可视化语法规范的思路有很大的借鉴意义

关系图和流程图

  • Mermaid.js:量级更轻
  • Sigma.jsAntV G6:功能更丰富
  • Dagre:绘制流程图的底层库,主要是用来计算图的元素布局,使用它再结合图形库,可以实现一个绘制流程图的图可视化库。

地理信息可视化

三维模型和数字孪生

思维导图

数学篇

在这里插入图片描述

视觉基础篇

在这里插入图片描述

视觉高级篇

在这里插入图片描述

可视化常用工具集

在这里插入图片描述

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凯小默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值