在一个图中,若从一个结点到另一个结点存在着路径,定义路径长度为一条路径上所经过的边的权值之和。从一个结点到令一个结点可能存在着多条路径,路径最短的那条称作最短路径,其长度成为最短路径长度或者最短距离。
Dijkastra思想(不能包含负权值的边):
设置两个结点集合S和T,S中存放已找到最短路径的结点,T中存放当前还未找到最短路径的结点。初始状态S中只包含起始点u0。然后不断的从集合T中选择到u0路径长度最短的结点v,每次加入,都要修改从源点u0到集合T中剩余结点的当前最短路径长度,为原来路径长度与u0经过v到达该结点的路径长度中的较小者。当T为空,算法结束。
Dijkastra设计:
distance数组用来记录从源点到其余个点的当前最短距离数值。
poj 1062题意与解题思路:
题意:
年轻的探险家来到了一个印第安部落里。在那里他和酋长的女儿相爱了,于是便向酋长去求亲。酋长要他用10000个金币作为聘礼才答应把女儿嫁给他。探险家拿不出这么多金币,便请求酋长降低要求。酋长说:"嗯,如果你能够替我弄到大祭司的皮袄,我可以只要8000金币。如果你能够弄来他的水晶球,那么只要5000金币就行了。"探险家就跑到大祭司那里,向他要求皮袄或水晶球,大祭司要他用金币来换,或者替他弄来其他的东西,他可以降低价格。探险家于是又跑到其他地方,其他人也提出了类似的要求,或者直接用金币换,或者找到其他东西就可以降低价格。不过探险家没必要用多样东西去换一样东西,因为不会得到更低的价格。探险家现在很需要你的帮忙,让他用最少的金币娶到自己的心上人。另外他要告诉你的是,在这个部落里,等级观念十分森严。地位差距超过一定限制的两个人之间不会进行任何形式的直接接触,包括交易。他是一个外来人,所以可以不受这些限制。但是如果他和某个地位较低的人进行了交易,地位较高的的人不会再和他交易,他们认为这样等于是间接接触,反过来也一样。因此你需要在考虑所有的情况以后给他提供一个最好的方案。
为了方便起见,我们把所有的物品从1开始进行编号,酋长的允诺也看作一个物品,并且编号总是1。每个物品都有对应的价格P,主人的地位等级L,以及一系列的替代品Ti和该替代品所对应的"优惠"Vi。如果两人地位等级差距超过了M,就不能"间接交易"。你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。
为了方便起见,我们把所有的物品从1开始进行编号,酋长的允诺也看作一个物品,并且编号总是1。每个物品都有对应的价格P,主人的地位等级L,以及一系列的替代品Ti和该替代品所对应的"优惠"Vi。如果两人地位等级差距超过了M,就不能"间接交易"。你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。
Input
输入第一行是两个整数M,N(1 <= N <= 100),依次表示地位等级差距限制和物品的总数。接下来按照编号从小到大依次给出了N个物品的描述。每个物品的描述开头是三个非负整数P、L、X(X < N),依次表示该物品的价格、主人的地位等级和替代品总数。接下来X行每行包括两个整数T和V,分别表示替代品的编号和"优惠价格"。
Output
输出最少需要的金币数。
Sample Input
1 4 10000 3 2 2 8000 3 5000 1000 2 1 4 200 3000 2 1 4 200 50 2 0
Sample Output
5250解题思路:
最短路径——Dijkstra算法
此题的关键在于等级限制的处理,采用枚举,即假设酋长等级为5,等级限制为2,那么需要枚举等级从3~5,4~6,5~7
从满足改等级范围的结点组成的子图中用Dijkstra来算出最短路径,最后求出最小值。
代码如下:
#include <iostream>
using namespace std;
const int MAX = 200000000;
int n; //物品总数
int m; //等级差距*
int graph[101][101]; //图
int d[101]; //从开始点到其余个点的花费
int value[101]; //物品本身的价值*
int level[101]; //物品等级*
bool s[101],in_limit[101]; //标记数组*
int dijkastra()
{
int result = MAX;
int i,j;
int k,dis;
memset(s,0,sizeof(s));
for(i = 2,d[1] = 0; i <= n; i++)
d[i] = MAX;
for(i = 1; i <= n; i++)
{
k = 0;
dis = MAX;
for(j = 1; j <= n; j++)
if(!s[j] && d[j] <= dis && in_limit[j])
{
k = j;
dis = d[j];
}
s[k] = 1;
for(j = 1; j <= n; j++)
{
if(in_limit[j] && d[j] > d[k] + graph[k][j])
d[j] = d[k] + graph[k][j];
}
}
for(i = 1; i <= n; i++)
{
d[i] += value[i];
if(d[i] < result)
result = d[i];
}
return result;
}
int main()
{
int i,j;
int result = MAX,t = 0;
int t1,v1;
int x;
cin>>m>>n;
for(i=0;i<=n;i++)
for(j=0;j<=n;j++)
if(i == j)
graph[i][j] = 0;
else
graph[i][j] = MAX;
for(i = 1; i <= n; i++)
{
cin>>value[i]>>level[i]>>x;
for(j = 1; j <= x; j++)
{
cin>>t1>>v1;
graph[i][t1] = v1;
}
}
for(i = 0; i <= m; i++)
{
memset(in_limit,0,sizeof(in_limit));
for(j = 1; j <= n; j++)
if(level[j] >= level[1]-m+i && level[j] <= level[1]+i)//这个地方是枚举的关键,必须保证每个范围内的等级限制均枚举出来
in_limit[j] = 1;
t = dijkastra();
if(result > t)
result = t;
}
cout<<result<<endl;
return 0;
}