2020杭电多校六 A Very Easy Math Problem 莫比乌斯反演

原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=6833

题意

∑ a 1 = 1 n ∑ a 2 = 1 n . . . ∑ a x = 1 n ( ∏ j = 1 n a j k ) f ( g c d ( a 1 , a 2 . . . a x ) ) g c d ( a 1 , a 2 . . a x ) \sum_{a_1=1}^{n}\sum_{a_2=1}^{n}...\sum_{a_x=1}^{n}(\prod_{j=1}^{n}a_j^k)f(gcd(a_1,a_2...a_x))gcd(a_1,a_2..a_x) a1=1na2=1n...ax=1n(j=1najk)f(gcd(a1,a2...ax))gcd(a1,a2..ax)

化简

令gcd(a1, a2…ax) = d

∑ a 1 = 1 n ∑ a 2 = 1 n . . . ∑ a x = 1 n ( ∏ j = 1 n a j k ) f ( d ) d \sum_{a_1=1}^{n}\sum_{a_2=1}^{n}...\sum_{a_x=1}^{n}(\prod_{j=1}^{n}a_j^k)f(d)d a1=1na2=1n...ax=1n(j=1najk)f(d)d

枚举d
∑ d = 1 n f ( d ) ∑ a 1 = 1 n ∑ a 2 = 1 n . . . ∑ a x = 1 n ( ∏ j = 1 n a j k ) [ g c d ( a 1 , a 2 . . . a x ) = d ] \sum_{d=1}^{n}f(d)\sum_{a_1=1}^{n}\sum_{a_2=1}^{n}...\sum_{a_x=1}^{n}(\prod_{j=1}^{n}a_j^k)[gcd(a_1,a_2...a_x) = d] d=1nf(d)a1=1na2=1n...ax=1n(j=1najk)[gcd(a1,a2...ax)=d]
将gcd化为1
∑ d = 1 n f ( d ) d k x + 1 ∑ a 1 = 1 n / d ∑ a 2 = 1 n / d . . . ∑ a x = 1 n / d ( ∏ j = 1 n a j k ) [ g c d ( a 1 , a 2 . . . a x ) = 1 ] \sum_{d=1}^{n}f(d)d^{kx+1}\sum_{a_1=1}^{n/d}\sum_{a_2=1}^{n/d}...\sum_{a_x=1}^{n/d}(\prod_{j=1}^{n}a_j^k)[gcd(a_1,a_2...a_x) = 1] d=1nf(d)dkx+1a1=1n/da2=1n/d...ax=1n/d(j=1najk)[gcd(a1,a2...ax)=1]
对gcd反演
∑ d = 1 n f ( d ) d k x + 1 ∑ a 1 = 1 n / d ∑ a 2 = 1 n / d . . . ∑ a x = 1 n / d ( ∏ j = 1 n a j k ) ∑ t ∣ a 1 , t ∣ a 2 . . μ ( t ) \sum_{d=1}^{n}f(d)d^{kx+1}\sum_{a_1=1}^{n/d}\sum_{a_2=1}^{n/d}...\sum_{a_x=1}^{n/d}(\prod_{j=1}^{n}a_j^k)\sum_{t|a_1,t|a_2..}\mu(t) d=1nf(d)dkx+1a1=1n/da2=1n/d...ax=1n/d(j=1najk)ta1,ta2..μ(t)
枚举t
∑ d = 1 n f ( d ) d k x + 1 ∑ t = 1 n / d μ ( t ) t k x ∑ a 1 = 1 n / t d ∑ a 2 = 1 n / t d . . . ∑ a x = 1 n / t d ( ∏ j = 1 n a j k ) \sum_{d=1}^{n}f(d)d^{kx+1}\sum_{t=1}^{n/d}\mu(t)t^{kx}\sum_{a_1=1}^{n/td}\sum_{a_2=1}^{n/td}...\sum_{a_x=1}^{n/td}(\prod_{j=1}^{n}a_j^k) d=1nf(d)dkx+1t=1n/dμ(t)tkxa1=1n/tda2=1n/td...ax=1n/td(j=1najk)

= ∑ d = 1 n f ( d ) d k x + 1 ∑ t = 1 n / d μ ( t ) t k x ( ∑ j = 1 n / t d j k ) x = \sum_{d=1}^{n}f(d)d^{kx+1}\sum_{t=1}^{n/d}\mu(t)t^{kx}(\sum_{j=1}^{n/td}j^k)^x =d=1nf(d)dkx+1t=1n/dμ(t)tkx(j=1n/tdjk)x
令T = td,并枚举T

∑ T = 1 n T k x ( ∑ j = 1 n / T j k ) x ∑ d ∣ T f ( d ) d μ ( T / d ) \sum_{T=1}^{n}T^{kx}(\sum_{j=1}^{n/T}j^k)^x\sum_{d|T}f(d)d\mu(T/d) T=1nTkx(j=1n/Tjk)xdTf(d)dμ(T/d)
我们令 h ( T ) = ∑ d ∣ T f ( d ) d μ ( T / d ) h(T) = \sum_{d|T}f(d)d\mu(T/d) h(T)=dTf(d)dμ(T/d)
得到
∑ T = 1 n T k x h ( T ) ( ∑ j = 1 n / T j k ) x \sum_{T=1}^{n}T^{kx}h(T)(\sum_{j=1}^{n/T}j^k)^x T=1nTkxh(T)(j=1n/Tjk)x
然后我们预处理出 ∑ T = 1 n T k x h ( T ) 的 前 缀 和 和 ∑ j = 1 n / T j k 的 值 \sum_{T=1}^{n}T^{kx}h(T)的前缀和和\sum_{j=1}^{n/T}j^k的值 T=1nTkxh(T)j=1n/Tjk
最终可以用一个整除分块解决

Code

#include <bits/stdc++.h>
using namespace std;
//#define ACM_LOCAL
#define re register
#define fi first
#define se second
const int N = 2e5 + 10;
const int M = 1e6 + 10;
const int INF = 0x3f3f3f3f;
const double eps = 1e-4;
const int MOD = 1e9 + 7;
typedef long long ll;
typedef pair<int, int> PII;
ll prime[N], mu[N], k;
ll phi[N], f[N], h[N], sum1[N], sum2[N];
bool is_prime[N];
ll t, K, x;
ll ksm(ll a, ll b) {
    ll res = 1, base = a;
    while (b) {
        if (b & 1) res = res * base % MOD;
        base = base * base % MOD;
        b >>= 1;
    }
    return res % MOD;
}
inline void init(int n) {
    memset(is_prime, true, sizeof is_prime);
    mu[1] = 1; phi[1] = 1; f[1] = 1;
    for (re int i = 2; i < n; ++i) {
        f[i] = 1;
        if (is_prime[i]) prime[++k] = i, mu[i] = -1, phi[i] = i - 1;
        for (re int j = 1; j <= k && i * prime[j] < n; ++j) {
            is_prime[i * prime[j]] = false;
            if (i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            } else {
                mu[i * prime[j]] = -mu[i];
                phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            }
        }
    }
    for (ll kk = 2; kk * kk < n; kk++) {
        for (ll j = kk * kk; j < n; j += kk * kk) {
            f[j] = 0;
        }
    }
    for (ll d = 1; d < n; d++) {
        for (ll T = d; T < n; T += d) {
            h[T] = (h[T] + f[d] * d % MOD * mu[T/d] % MOD + MOD) % MOD;
        }
    }
    for (ll T = 1; T < n; T++) {
        ll tmp1 = ksm(T, K);
        sum1[T] = (sum1[T-1] + tmp1) % MOD;
        sum2[T] = (sum2[T-1] + ksm(tmp1, x) * h[T] % MOD) % MOD;
    }
}

ll calc(ll n) {
    ll ans = 0;
    for (ll l = 1, r; l <= n; l = r + 1) {
        r = min(n, n / (n / l));
        ans = (ans + (sum2[r] - sum2[l-1] + MOD) % MOD * ksm(sum1[n / l], x) % MOD) % MOD;
    }
    return ans;
}
void solve() {
    cin >> t >> K >> x;
    init(N);
    while (t--) {
        ll n; cin >> n;
        printf("%lld\n", calc(n));
    }
}

signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
#endif
    solve();
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值