在当前数字化转型过程中,技术开发者面临着各种数据获取与流程自动化的需求。随着AI技术的演进,基于 MCP 协议构建的 AI-工具交互标准为自动化领域开辟了新可能。本文将探讨如何通过 MCP 协议桥接 AI 能力与Playwright 自动化工具,构建可靠的数据自动化处理,探索智能自动化在实际业务场景中的落地应用。
1、日常痛点
无论是前端、后端还是全栈开发者,都经常面临这些问题:
- 重复性工作消耗精力:如定期收集财报数据、填写表单、生成报告等
- 数据获取效率低下:手动从各种来源提取数据既耗时又容易出错
- 流程自动化难度大:传统自动化工具学习曲线陡峭,维护成本高
- 跨系统集成复杂:不同平台间的数据流转需要大量定制开发
以恒瑞医药的财务数据为例,开发者可能需要定期从多个来源获取、整合并分析这些数据。
2、AI驱动的自动化新范式
Cline + MCP + Playwright 组合提供了一种自动化解决方案:
Cline:VSCode中的AI助手
Cline是VSCode中的一个强大插件,它将AI能力直接集成到你的开发环境中。你只需用自然语言描述需求:“帮我获取恒瑞医药的财报数据”,它就能理解你的意图并生成代码。
Cline插件
MCP:模型上下文协议
MCP (Model Context Protocol) 是一种标准化协议,允许AI模型与外部工具和服务进行交互。它为AI提供了"眼睛"和"手",使AI能够感知和操作外部世界,实现人机协作的新模式。
MCP 架构
MCP 由五个核心组件组成:
- MCP 主机(MCP Hosts):发起请求的 AI 应用,如 Claude、ChatGPT 等聊天机器人;
- MCP 客户端(MCP Clients):维护与 MCP 服务器保持 1 对 1 的连接;
- MCP 服务器(MCP Servers):提供上下文、工具和提示信息;
- 本地资源:文件、数据库、API等;
- 远程服务: API、云服务等,MCP服务端可代理访问。
MCP Hosts 通过 MCP Clients 连接至 MCP Server,并与相应工具进行通信交互,从而获取工具信息数据。
Playwright:现代浏览器自动化工具
Playwright提供了强大的浏览器自动化能力,能够模拟真实用户行为,处理复杂的Web应用,实现从数据获取到表单提交的全流程自动化。
3、环境搭建:三分钟上手
使用 Cline + MCP + Playwright ,我们需要进行简单的环境配置:
Cline
本质上是一个基于 VsCode
的 AI
编码辅助插件, 本文采用 Trae
( 基于vscode的编辑器 ) 安装Cline
插件 :
安装好插件后,进行模型配置,模型采用的是DeepseekV3,填入自己的api-key:
配置模型
MCP配置,打开Cline右上方按钮:
配置MCP:
{
"mcpServers": {
"playwright": {
"command": "npx",
"args": [
"@playwright/mcp@latest"
],
"autoApprove": [
"browser_navigate",
"browser_click",
"browser_type",
"browser_take_screenshot",
"browser_wait"
// 其他必要权限...
],
"timeout": 600
}
}
}
4、实战案例:数据自动化处理
步骤1:设计自动化流程
首先,我们通过自然语言向Cline描述我们的需求:
我想看恒瑞医药(证券代码:600276)的业绩情况,帮我按顺序执行以下指令:
1.打开 https://www.sse.com.cn/disclosure/listedinfo/listedcompanies/;
2.请输入公司代码或简称 :恒瑞医药;
3.报告类型为:年报;
4.打开2024年年报;
5.并相关数据保存在txt中;
Cline
会理解这个需求,并生成相应的MCP
指令和Playwright
代码。
步骤2:执行自动化流程
通过MCP
,AI
可以直接控制Playwright
执行以下操作:
-
任务需要从上海证券交易所网站获取恒瑞医药(600276)的2024年年报数据并保存为txt文件
-
需要模拟浏览器操作完成以下步骤:
- 访问指定网址
- 输入公司代码/名称
- 选择年报类型
- 打开2024年年报
- 提取数据并保存
-
可以使用playwright MCP服务器提供的浏览器自动化工具来完成这些操作
-
需要按顺序执行多个浏览器操作,每个操作需要等待前一个完成
执行效果
步骤3:
输出结果:
AI自动输出到txt中并打开:
5、AI驱动自动化的优势对比
与传统自动化方法相比,AI驱动的自动化具有显著优势:
特性 | 传统自动化 | AI驱动自动化 |
---|---|---|
开发效率 | 需手动编写大量代码 | 通过自然语言指令快速生成 |
适应性 | 界面变动需手动更新 | AI能自动适应界面变化 |
复杂任务处理 | 需分步骤精确编程 | 能理解高层次任务目标并自主规划 |
数据处理 | 固定规则,易出错 | 智能识别数据模式,准确率高 |
维护成本 | 高 | 低 |
6、实际业务场景应用
这套技术栈可以应用于多种实际业务场景:
- 财务分析系统:自动获取财报数据,生成财务分析报告
- 市场监控平台:实时监控市场动态,捕捉商机和风险
- 客户关系管理:自动化客户数据收集和分析
- 内部流程优化:自动化企业内部的重复性工作流程
7、写在最后
随着AI技术的不断发展,我们可以预见:
- 更智能的流程规划:AI将能够自主设计最优自动化流程
- 自我修复能力:当界面变化时,自动化流程能自动调整策略
- 多模态数据处理:不仅处理文本,还能处理图表、PDF等复杂格式
- 低代码/无代码平台:更多开发者能通过自然语言创建复杂自动化流程
Cline + MCP + Playwright 的组合为技术开发者提供了一种自动化解决方案。通过这套技术栈,我们可以:
- 大幅提高开发效率
- 增强自动化流程的适应性和稳定性
- 提升数据处理的准确性
- 降低维护成本
AI +自动化不是要取代我们,而是要成为我们的得力助手,让我们能够专注于真正需要人类智慧和创造力的工作。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!