计算机硬件基础
1-各种进制
R进制,通常说逢R进1,可以用0,1,2....R-1
二进制:
八进制:
十六进制:
2-数值计算
对于任意一个R进制数,它的每一位数值等于该位的数码乘以该位的权数。
权数由Rk表示,k与该位和小数点之间的距离有关。该位位位于小数点左边,k值是该位和小数点之间数码的
个数,而当该位位于小数点右边,k值是负值,其绝对值是该位和小数点之间数码个数加1
十进制:1234.56
1234.56=1*10^3+2*10^2+3*10^1+4*10^0+5*10^-1+6*10^-2
3-数制转换
十进制转化为R进制利用“除以R取余数法”。例如:
余数
2|94 0
2|47 1
2|23 1
2|11 1
2|5 1
2|2 0
2|1 1
余数从下往上排列即可,即得1011110
十进制小数利用乘2取整数转换为二进制小数
十进制小数0.43转换成二进制小数的过程如下(假设要求小数点后取5位)
0.43
0.43×2=0.86 0
0.86×2=1.72 1
0.72×2=1.44 1
0.44×2=0.88 0
0.88×2=1.76 1
0.76
从上往下可得转换后的二进制小数0.01101B
2^4 二进制在转换为十六进制时,可从小数点开始,往前每四位转换成对应的十六进制即可,往后每四位转换成十六进制即可,不
够四位的补0即可。
比如 10 1011.1111 1B=0010 1011 . 1111 1000
=2B.F8
2^3 同理,二进制在转换成八进制时,可从小数点开始,往前每三位转换
1-各种进制
R进制,通常说逢R进1,可以用0,1,2....R-1
二进制:
八进制:
十六进制:
2-数值计算
对于任意一个R进制数,它的每一位数值等于该位的数码乘以该位的权数。
权数由Rk表示,k与该位和小数点之间的距离有关。该位位位于小数点左边,k值是该位和小数点之间数码的
个数,而当该位位于小数点右边,k值是负值,其绝对值是该位和小数点之间数码个数加1
十进制:1234.56
1234.56=1*10^3+2*10^2+3*10^1+4*10^0+5*10^-1+6*10^-2
3-数制转换
十进制转化为R进制利用“除以R取余数法”。例如:
余数
2|94 0
2|47 1
2|23 1
2|11 1
2|5 1
2|2 0
2|1 1
余数从下往上排列即可,即得1011110
十进制小数利用乘2取整数转换为二进制小数
十进制小数0.43转换成二进制小数的过程如下(假设要求小数点后取5位)
0.43
0.43×2=0.86 0
0.86×2=1.72 1
0.72×2=1.44 1
0.44×2=0.88 0
0.88×2=1.76 1
0.76
从上往下可得转换后的二进制小数0.01101B
2^4 二进制在转换为十六进制时,可从小数点开始,往前每四位转换成对应的十六进制即可,往后每四位转换成十六进制即可,不
够四位的补0即可。
比如 10 1011.1111 1B=0010 1011 . 1111 1000
=2B.F8
2^3 同理,二进制在转换成八进制时,可从小数点开始,往前每三位转换