计算机硬件基础(上)

本文介绍了计算机硬件基础知识,包括不同进制(二进制、八进制、十六进制)的表示和转换,数值计算的原理,以及数制转换的方法。详细阐述了如何将十进制数转换为其他进制,如二进制和十六进制。此外,还讲解了二进制编码,包括原码、移码、浮点数编码(如IEEE754标准)和BCD码的概念及其应用。
摘要由CSDN通过智能技术生成
计算机硬件基础
1-各种进制
    R进制,通常说逢R进1,可以用0,1,2....R-1
      二进制:
   八进制:
   十六进制:
2-数值计算
     对于任意一个R进制数,它的每一位数值等于该位的数码乘以该位的权数。
  权数由Rk表示,k与该位和小数点之间的距离有关。该位位位于小数点左边,k值是该位和小数点之间数码的
  个数,而当该位位于小数点右边,k值是负值,其绝对值是该位和小数点之间数码个数加1
 
  十进制:1234.56
  1234.56=1*10^3+2*10^2+3*10^1+4*10^0+5*10^-1+6*10^-2
3-数制转换
     十进制转化为R进制利用“除以R取余数法”。例如:
            余数
  2|94      0
  2|47      1
  2|23      1
  2|11      1
  2|5       1
  2|2       0
  2|1       1
  余数从下往上排列即可,即得1011110
 
  十进制小数利用乘2取整数转换为二进制小数
  十进制小数0.43转换成二进制小数的过程如下(假设要求小数点后取5位)
  0.43
  0.43×2=0.86   0
  0.86×2=1.72   1
  0.72×2=1.44   1
  0.44×2=0.88   0
  0.88×2=1.76   1
    0.76
 
 从上往下可得转换后的二进制小数0.01101B
 2^4  二进制在转换为十六进制时,可从小数点开始,往前每四位转换成对应的十六进制即可,往后每四位转换成十六进制即可,不
  够四位的补0即可。
  比如 10 1011.1111 1B=0010 1011 . 1111 1000
                      =2B.F8
 2^3  同理,二进制在转换成八进制时,可从小数点开始,往前每三位转换
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值