深度学习神经网络激活函数的优点

激活函数在神经网络中引入非线性,使模型能逼近任意函数,避免线性模型的局限。ReLU因其计算效率高、防止梯度消失、促进网络稀疏性和优化易行性,成为深度学习中常用的激活函数。
摘要由CSDN通过智能技术生成

一、为什么使用激活函数?

如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。而激活函数 引入了非线性,不再是输入的线性组合,可以逼近任意函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值