- 博客(15)
- 收藏
- 关注
原创 深度增强学习——Q-learning和决策梯度
深度增强学习——Q-learning和决策梯度一、什么是强化学习强化学习是指,我们有一个智能体(agent),能够在其环境(environment)中采取行动,也可以因为其行动获得奖励,它的目标是学会如何行动以最大限度地获得奖励。强化学习多是一种动态规划的思路,使用生活化语言描述,就叫做:实践出真知。与之前学过的监督学习和无监督学习不同,强化学习本身并不依赖于数据或者数据的标签,而是依赖于对输入数据预测之后的反馈,因此它介于监督学习和非监督学习之间。如上图所示,一个agent(例如:玩家)做出了一个
2020-07-23 22:03:32 2605
原创 生成模型——PixelRNN、PixelCNN、变分自编码器VAE和生成式对抗网络GAN
生成模型——PixelRNN、PixelCNN、变分自编码器VAE和生成式对抗网络GAN之前我们已经讲了很多的监督学习的网络模型——有数据集x和标签集y,我们找到一个函数或一种关系,可以完成从x到y的映射;而无监督学习是指,在没有标签的训练数据的情况下,学习一些数据中潜在的隐含结构;生成模型就属于无监督中的一种。1. 什么是生成模型通俗地讲,比如有一堆猫狗的图片,之前学过的判别模型只是要找到猫狗的差异就可以,看到图像能够判断出是什么类别;而生成模型则是通过学习猫是什么样的,狗是什么样的,它有能力生
2020-07-22 17:50:50 3145 2
原创 图像风格迁移
图像风格迁移1. 背景提出图像风格迁移指的是通过某种方法, 把图像从原风格转换到另外一个风格, 同时保证图像内容没有变化。假设没有现在的方法,让我来做的话,我可能会从两种思路下手:将两幅图像叠加;这是最简洁且看上去效果还有点相似的方法,但是它个很大的问题是,图像风格改变的同时原图像的内容也改变了,并不符合图像风格迁移的定义;先分析给定风格的图像,统计其像素分布的数学性质,建立数学模型,再分析要做迁移的图像,使其贴合特定的模型;这看上去可行,但是每换一种风格,就要换一种模型,并不具有应用意义;
2020-07-21 22:25:31 2507
原创 RNN与LSTM的对比分析
RNN与LSTM一、RNN1. 为什么需要RNN?在这之前,我们已经学习了基础的神经网络,它们可以当做是能够拟合任意函数的黑盒子,只要训练数据足够,给定特定的x,就能得到希望的y;但基础的神经网络只在层与层之间建立了权连接,也就是说,他们都只能单独的去处理一个个的输入,前一个输入和后一个输入是完全没有关系的。而在实际应用中某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。RNN最大的不同之处就是在层之间的神经元之间也建立的权连接,相比一般的神经网络来说,他能够处理序列变化的数据
2020-07-20 20:51:02 8080
原创 CNN架构之ResNet
CNN架构之ResNetResNet在2015年的ImageNet大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge, ILSVRC)中获得了图像分类和物体识别的优胜,名声大噪。在此之前,AlexNet——2012年ImageNet的获胜者,这个模型仅有8个卷积层的深度学习,后来的VGG网络有16乃至19层,GoogleNet有22层,而ResNet 有152层。随着模型变得越来越深,Top-5的错误率也越来越低,目前降到了3.5%附近
2020-07-18 11:43:43 1427
原创 简述批量归一化batch_normalization
批量归一化batch_normalization一、为什么要用批量归一化机器学习领域有个很重要的假设:独立同分布假设,就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障。如果训练数据与测试数据的分布不同,网络的泛化能力就会严重降低。在之前的学习过程中我们知道,输入层的数据,已经归一化,而后面网络每一层的输入数据的分布一直在发生变化,前面层训练参数的更新将导致后面层输入数据分布的变化,必然会引起后面每一层输入数据分布的改变。而且,网络前面几层
2020-07-17 16:23:27 475
原创 神经网络中的各种优化方法
神经网络中的优化方法在上一章,我们已经讲了参数的初始化,下一步就是通过训练数据集,来寻找使得损失函数值最小的(W,b),在这个过程中,一个好的优化算法往往可以帮助我们更加快速、准确地找到合适的参数。因此,本文就神经网络中的各种优化算法做简要的分析与讨论一、Gradient Descent梯度下降梯度下降算法工作的方式就是重复计算梯度∇C,然后沿着相反的方向移动,但是这种方法会使学习过程变得很缓慢,因为对于每个训练实例x, 都要计算梯度向量∇C,如果训练数据集过大,就会花费很长时间,其对于(W,b
2020-07-15 10:58:46 2535 1
原创 神经网络中的参数的初始化
神经网络中的参数初始化任何网络在训练之前,都需要经过参数初始化,在神经网络中,权重初始化方法对模型的收敛速度和性能有着至关重要的影响。因此,本文就来讨论一下常见的集中权重初始化方法。将W初始化为0或同一常数似乎在很多时候,我们都习惯将参数初始化为0 ,但在神经网络中,我们不仅不能都初始化为0,而且不能初始化为同一常数。我们以这幅图为例来看,如果我们将W均初始化为同一常数(包括0),那么每个神经元都将在你的输入数据上做相同的操作(注意,不一定是所有的神经元都死亡,因为还有b),输出相同的值,并
2020-07-14 22:11:53 1035 1
原创 常见的激活函数及其优缺点分析
常见的激活函数及其优缺点分析在上一章我们总体介绍了一下卷积神经网络的框架,其中谈到了激活函数的作用,今天我们来具体分析一下都有哪些激活函数,他们各自的特点是什么,以及我在学习时的疑问与解答(部分截图来源于网络,如有侵权,烦请告知)一、 sigmoid函数特点:所有元素都被压缩在[0,1]范围内,当输入数字很大或很小时,图像都趋于平滑,在0附近趋于线性;其函数表达式和图像如下所示sigmoi函数是比较原始的激活函数,现在已经不太常用了,主要因为它有以下3个问题:sigmoid函数饱和
2020-07-13 20:39:55 4295
原创 卷积神经网络的那些事儿
卷积神经网络的那些事儿这是我自己对所学内容的总结与思考,图片均来自网络,如有错误,欢迎大家指正,若有侵权,烦请告知学习了卷积神经网络之后,总觉得似懂非懂,虽有了一定的概念,但深究起来整个流程又好像不太顺畅,今天就给大家从头开始理一下。一、全连接神经网络一开始,我们的网络是这样的(关于它的历史就不多赘述了)。最左边是输入层,最右边是输出层,处于输入层和输出层中间的都叫隐藏层,图中的每一个小圆圈都代表一个神经元,处于同一层的神经元之间无联系,第N层每个神经元和第N-1层的每个神经元相连。我们考虑一
2020-07-12 22:20:30 290
原创 cs231n assignment(一) 两层神经网络
cs231n assignment(一) 两层神经网络这是我自己对所学内容的总结与思考,如有错误,欢迎大家指正,若有侵权,烦请告知一、预备知识神经网络这一部分的关键在于学会其反向传播,正确推导任意复杂函数的导数;当函数比较简单时,我们可以直接给出其导数,但在后续学习或实践中,会遇到各种各样复杂的函数,这时,如果仍然按照以前的方法推算,会使公式变得非常复杂且极易出错。通过这一节对神经网络反向传播的学习,我们可以将任意给出的复杂函数分解为最基本的代数运算,再利用链式法则来推导其导数,下面给出本实验中各
2020-07-11 19:06:54 714
原创 cs231n assignment(一) softmax分类器
cs231n assignment(一) softmax分类器一、预备知识softmax将一些输入映射为0-1之间的实数,每个类别的概率之和等于1,它总是试图让更多的概率集中在正确的类别上损失函数及其求导对于该损失函数和梯度,同样有数值计算和向量计算(矩阵)两种实现方式softmax与svm的不同之处在于损失函数不同,且输出不同,svm输出的是每个类别的得分,而softmax输出的是属于每个类别的概率。因此在这一节,我们只给出损失函数的代码,其余参见svm即可二、实验代码from bui
2020-07-11 17:25:47 268
原创 cs231n assignment(一) svm线性分类器
cs231n assignment(一) svm线性分类器一、预备知识线性分类(实质上类似于模板匹配)——f(x,W)=Wx+b在本实验中,输入的图像都是32×32×3(=3072),所有图像均属于10个类别中的一个;f(x,W)是10×1的列向量,表示x图像在这10类中的得分;W为10×3072的矩阵;x是3072×1的矩阵,是将一幅图像所有像素展开的结果;b是10×1的常数向量(偏置项),它不与训练数据交互,只是提供给我们一些数据独立的偏好值svm的折页损失函数其中,x为输入的图像,y为类
2020-07-11 12:04:25 449
原创 cs231n assignment(一) knn分类器
cs231n assignment(一) knn分类器这是我自己对所学内容的总结与思考,如有错误,欢迎大家指正,若有侵权,烦请告知一、预备知识KNN算法的核心思想是1)计算已知类别中数据集的点与当前点的距离。2)按照距离递增次序排序。3)选取与当前点距离最小的k个点。4)确定前k个点所在类别的出现频率。5)返回前k个点中出现频率最高的类别作为当前点的预测分类。评价两幅图像之间距离的指标:如上图所示,L1评价指标对应的是一个菱形,菱形上的任意一点在L1上与原点等距,而L2
2020-07-10 23:53:26 225
原创 在windows上搭建cs231n本地作业环境
在windows上搭建cs231n本地作业环境最近在学习斯坦福大学计算机视觉实验室推出的 cs231n 这门课,在此分享一些自己的学习心得,希望在提升自己的同时能帮大家解决一些小问题。搭建本地作业环境下载作业包 Spring 2020 Assignments(IE浏览器打不开,换其它浏览器)下载好后解压(我放在了桌面)下载数据集CIFAR-10,解压后放到作业代码下的cs231n/datasets里(作业一)下载Anaconda:Anaconda官网在网页底端找到对应版本下载并安装
2020-07-10 18:48:46 939
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人