http://codeforces.com/contest/877/problem/F
题意:有n = 1e5个数,有正有负,有1e5个区间询问,每次询问区间[l, r]中有多少个子区间的和为K, 所有询问K都是一样的,小于1e9.
思路:求前缀和sum[], 等价于询问sum[] 在 [L - 1, R] 中有多少对(l,r) 满足sum[r] - sum[l] = K. 所以可以分块暴力,每次加数删数都访问cnt[]数组,表示某个前缀的个数是多少,由于nsqrt(n)*log(n) 太慢,所以可以离散化优化成nsqrt(n).
这是一个莫队的模板题,莫队有套路所在,首先算法执行中的L,R指针都是前闭后闭的区间,这样莫队的过程如下:
int L = 0, R = -1;
for (int i = 1; i <= Q; ++i) {
int l = seq[i].l, r = seq[i].r;
while (R < r) add(A[++R]);
while (R > r) del(A[R--]);
while (L < l) del(A[L++]);
while (L > l) add(A[--L]);
ans[seq[i].id] = res;
}
唯一需要修改的东西就是add和del函数,还有就是L和R的初始值,如果A[]是0-based那么L = 0, R = 0; 若为1-based那么L = 1, R = 0; 而且始终都是先移R指针再移L指针才能保持区间合法。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <iostream>
#include <string>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <bitset>
#include <stack>
using namespace std;
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
#define MP make_pair
#define PB push_back
#define SZ(x) (int((x).size()))
#define ALL(x) (x).begin(), (x).end()
#define X first
#define Y second
template<typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
typedef long long LL;
typedef long double LD;
const int INF = 0x3f3f3f3f;
template <class T>
inline bool RD(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1 , ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void PT(T x) {
if (x < 0) putchar('-') ,x = -x;
if (x > 9) PT(x / 10);
putchar(x % 10 + '0');
}
typedef pair<int, int> pii;
const int N = 1e5 + 100;
const int BLK = 350;
LL a[N];
int t[N];
map<LL, int> mp;
LL cnt[N];
int top;
int nxt[N], pre[N];
pair<pii, int> qry[N];
LL res[N];
bool cmp(pair<pii, int> &a, pair<pii, int> &b) {
if(a.X.X / BLK == b.X.X / BLK) {
return a.X.Y < b.X.Y;
}
return a.X.X / BLK < b.X.X / BLK;
}
int main() {
int n, K;
cin >> n >> K;
for(int i = 1; i <= n; i ++) scanf("%d", &t[i]);
mp[0] = ++ top;
for(int i = 1; i <= n; i ++) {
scanf("%lld", &a[i]);
if(t[i] == 1) a[i] = a[i] + a[i - 1];
else a[i] = a[i - 1] - a[i];
if(mp[a[i]] == 0) mp[a[i]] = ++ top;
if(mp[a[i] - K]) {
pre[mp[a[i]]] = mp[a[i] - K];
nxt[mp[a[i] - K]] = mp[a[i]];
}
if(mp[a[i] + K]) {
nxt[mp[a[i]]] = mp[a[i] + K];
pre[mp[a[i] + K]] = mp[a[i]];
}
}
for(int i = 0; i <= n; i ++) a[i] = mp[a[i]];
int Q;
cin >> Q;
for(int i = 1; i <= Q; i ++) {
scanf("%d %d", &qry[i].X.X, &qry[i].X.Y);
qry[i].X.X --;
qry[i].Y = i;
}
sort(qry + 1, qry + 1 + Q, cmp);
LL ans = 0;
for(int L = 0, R = -1, i = 1; i <= Q; i ++) {
int l = qry[i].X.X, r = qry[i].X.Y;
int now = 0;
while(R < r) {
now = a[++ R];
if(pre[now]) ans += cnt[pre[now]];
cnt[now] ++;
}
while(R > r) {
now = a[R --];
cnt[now] --;
if(pre[now]) ans -= cnt[pre[now]];
}
while(L > l) {
now = a[-- L];
if(nxt[now]) ans += cnt[nxt[now]];
cnt[now] ++;
}
while(L < l) {
now = a[L ++];
cnt[now] --;
if(nxt[now]) ans -= cnt[nxt[now]];
}
res[qry[i].Y] = ans;
}
for(int i = 1; i <= Q; i ++) printf("%lld\n", res[i]);
}