题目链接:http://codeforces.com/contest/876/problem/E
题意:现在我们想要让所有行的字典序升序排列,且对于每一种数字,我们可以采用一种变换,比如 x->x'
,所有加 '
的都比不加小,问是否可以找到一种变换使得原序列升序。
思路:
只要相邻两行满足升序则原序列升序。
于是我们考虑相邻的两行 a,b ,找到第一个 ai!=bi ,则这两个序列之间的大小由这两个字母来决定,
既然要升序,假如 ai<bi ,则此时已经满足升序的条件,选择 ai 则必须选择 bi ,选择 b′i 则必须选择 a′i ,连边 ai−>bi,b′i−>a′i 。
假如 ai>bi ,要使原序列升序则必须选择 a′i,bi ,连边 ai−>a′i,b′i−>bi
然后运用tarjan输出解,我原以为要在拓扑排序的过程选择哪些color的块可以选,选完某一个color的块,就要把其他的对立的color块标记上不可选。实际上,根本不需要标记对立的color块不可选。可以证明在2-sat经过tarjan后的DAG中,两个对立的点(i * 2, i * 2 + 1)中拓扑序小的那个点必然可以选,以这种规则产生的方案一定合法。 而且tarjan的过程中就能把每个点的拓扑序顺便处理出来了,代码量就很短了。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <iostream>
#include <string>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <bitset>
#include <stack>
using namespace std;
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
#define MP make_pair
#define PB push_back
#define SZ(x) (int((x).size()))
#define ALL(x) (x).begin(), (x).end()
#define X first
#define Y second
template<typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
typedef long long LL;
typedef long double LD;
const int INF = 0x3f3f3f3f;
template <class T>
inline bool RD(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1 , ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void PT(T x) {
if (x < 0) putchar('-') ,x = -x;
if (x > 9) PT(x / 10);
putchar(x % 10 + '0');
}
typedef pair<int, int> pii;
const int N = 2e5 + 100;
vector<int> g[N];
inline void add_edge(int u,int v)
{
g[u].push_back(v);
}
int dfn[N],low[N], col[N], tmp[N],sta[N],top;
int topo_index[N], tot;
int indx, scc;
void tarjan(int u)
{
low[u]=dfn[u]=++indx;
tmp[u]=1;
sta[++top]=u;
int sz=g[u].size();
for(int i=0;i<sz;i++)
{
int v=g[u][i];
if(tmp[v]==0) tarjan(v);
if(tmp[v]==1) low[u]=min(low[u],low[v]);
}
if(dfn[u]==low[u])
{
scc ++;
int v;
do
{
v=sta[top--];
tmp[v]=2;
col[v] = scc;
topo_index[v] = ++ tot;
}while(v!=u);
}
}
vector<int> vec[N];
vector<int> res;
int main() {
int n, m;
cin >> n >> m;
bool flag = false;
for(int i = 1; i <= n; i ++) {
int k, num;
scanf("%d", &k);
bool f = true;
for(int j = 0; j < k; j ++) {
scanf("%d", &num);
vec[i].push_back(num);
if(i != 1 && f && vec[i - 1].size() >= j + 1) {
if(vec[i - 1][j] > vec[i][j]) {
add_edge(vec[i - 1][j] << 1, vec[i - 1][j] << 1 | 1);
add_edge(vec[i][j] << 1 | 1, vec[i][j] << 1);
f = false;
} else if(vec[i - 1][j] < vec[i][j]) {
add_edge(vec[i - 1][j] << 1, vec[i][j] << 1);
add_edge(vec[i][j] << 1 | 1, vec[i - 1][j] << 1 | 1);
f = false;
}
}
}
if(i != 1 && f && SZ(vec[i - 1]) > SZ(vec[i])) flag = true;
}
if(flag) return puts("No") * 0;
for(int i = 2; i < 2 * (m + 1); i ++)
if(dfn[i] == 0) tarjan(i);
for(int i = 2; i < 2 * (m + 1); i ++) {
if(col[i] == col[i ^ 1]) {
puts("No");
return 0;
}
}
for(int i = 1; i <= m; i ++) {
if(topo_index[i << 1 | 1] < topo_index[i << 1])
res.push_back(i);
}
puts("Yes");
printf("%d\n", SZ(res));
for(int v : res) printf("%d\n", v);
}
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <iostream>
#include <string>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <bitset>
#include <stack>
using namespace std;
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
#define MP make_pair
#define PB push_back
#define SZ(x) (int((x).size()))
#define ALL(x) (x).begin(), (x).end()
#define X first
#define Y second
template<typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
typedef long long LL;
typedef long double LD;
const int INF = 0x3f3f3f3f;
template <class T>
inline bool RD(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1 , ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void PT(T x) {
if (x < 0) putchar('-') ,x = -x;
if (x > 9) PT(x / 10);
putchar(x % 10 + '0');
}
typedef pair<int, int> pii;
const int N = 2e5 + 100;
vector<int> g[N];
inline void add_edge(int u,int v)
{
g[u].push_back(v);
}
int dfn[N],low[N], col[N], tmp[N],sta[N],top;
int indx, scc;
void tarjan(int u)
{
low[u]=dfn[u]=++indx;
tmp[u]=1;
sta[++top]=u;
int sz=g[u].size();
for(int i=0;i<sz;i++)
{
int v=g[u][i];
if(tmp[v]==0) tarjan(v);
if(tmp[v]==1) low[u]=min(low[u],low[v]);
}
if(dfn[u]==low[u])
{
scc ++;
int v;
do
{
v=sta[top--];
tmp[v]=2;
col[v] = scc;
}while(v!=u);
}
}
vector<int> vec[N];
vector<int> G[N];
int deg[N];
bool print[N];
vector<int> book[N];
int que[N], head, tail;
vector<int> res;
int main() {
int n, m;
cin >> n >> m;
bool flag = false;
for(int i = 1; i <= n; i ++) {
int k, num;
scanf("%d", &k);
bool f = true;
for(int j = 0; j < k; j ++) {
scanf("%d", &num);
vec[i].push_back(num);
if(i != 1 && f && vec[i - 1].size() >= j + 1) {
if(vec[i - 1][j] > vec[i][j]) {
add_edge(vec[i - 1][j] << 1, (vec[i - 1][j] << 1) ^ 1);
add_edge((vec[i][j] << 1) ^ 1, vec[i][j] << 1);
f = false;
} else if(f && vec[i - 1][j] < vec[i][j]) {
add_edge(vec[i - 1][j] << 1, vec[i][j] << 1);
add_edge((vec[i][j] << 1) ^ 1, (vec[i - 1][j] << 1) ^ 1);
f = false;
}
}
}
if(i != 1 && f && SZ(vec[i - 1]) > SZ(vec[i])) flag = true;
}
if(flag) return puts("No") * 0;
for(int i = 2; i < 2 * (m + 1); i ++)
if(dfn[i] == 0) tarjan(i);
for(int i = 2; i < 2 * (m + 1); i ++) {
book[col[i]].push_back(col[i ^ 1]);
if(col[i] == col[i ^ 1]) {
puts("No");
return 0;
}
}
for(int u = 2; u < 2 * (m + 1); u ++) {
for(int j = 0; j < SZ(g[u]); j ++) {
int v = g[u][j];
if(col[u] == col[v]) continue;
deg[col[u]] ++;
G[col[v]].push_back(col[u]);
}
}
for(int i = 1; i <= scc; i ++)
if(deg[i] == 0) que[tail ++] = i;
while(head < tail) {
int u = que[head ++];
if(print[u] == 0) {
for(int v : book[u]) print[v] = 1;
}
for(int v : G[u]) if(--deg[v] == 0) que[tail ++] = v;
}
for(int i = 1; i <= m; i ++) {
if(print[col[(i << 1) ^ 1]] == 0) res.push_back(i);
}
puts("Yes");
printf("%d\n", SZ(res));
for(int v : res) printf("%d\n", v);
}