arcgis pro 2.5将csv数据进行3D克里金插值并导出栅格数据步骤

本文详细介绍了如何使用GIS软件将CSV数据转换为SHP文件,并进行克里金插值分析,接着将插值结果导出为栅格数据。此外,还涉及了如何利用多边形对栅格数据进行裁剪,以创建符合特定形状的数据文件。这个过程对于地理数据分析和地图制图至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大体步骤

 1,将csv转为shp文件,然后将shp进行克里金插值,然后将插值结果导出为栅格数据,然后制作数据的多边形数据文件,根据多边形将矩形栅格裁剪为多边形的形状。

各个步骤操作详细步骤

1,将csv转为shp文件:将导入的csv右键export features,然后选择environments,选择output coordinates,选择projected  coordinate system,然后选择world,选择WGS 1984 World Mercator,然后配置parameters,将output class输入为shp,最后run即可

2,将shp进行克里金插值,打开analysis,选择tools,选择geotatistical Analysit tool ,打开interpolation,打开empirical Beyisian  kriging 3D,在parameters的输入数据设置为shp文件,value fields设置为value字段,然后advanced model parameters设置前两个参数为exponential和log empirical,最后run

3,将克里金插值结果导出为栅格:在export raster面板下的clipping geometry,选择current display extend,然后选择renderer setting里选中use renderer以及force RGB,最后run

4,这块我没有做,但是大致流程是制作一个形状的shapfile文件(比如圆形,正方形等),然后选择raster工具

然后在output extent上传你的形状文件shapfile,即可裁剪

### 如何在 ArcGIS Pro 中执行克里金插值 #### 准备工作 为了成功完成克里金插值,需先准备好所需的输入数据集。通常情况下,这包括两个主要的数据源:一是目标变量(如降水量),二是辅助变量(如高程)。对于本案例而言,则是指准备好的降水站点测量值以及对应的数字高程模型(DEM)[^1]。 #### 数据预处理 - **转换 DEM 至点要素** 将 DEM 转换成一系列代表不同高度位置的离散点要素类文件。此过程可以通过 `栅格转点` 工具实现,从而获得可用于后续分析的高度样本点集合。 #### 启用地统计分析模块加载数据 启动 ArcGIS Pro 的地统计分析师扩展模块,依次导入上述准备完毕的目标变量(即降雨量观测站记录)与辅助变量(DTM所转化成之点位资料),确保二者均处于同一坐标系下以便于联合运算处理。 #### 执行协同克里金算法配置 进入“空间统计工具箱”,找到打开“克里金法/协同克里金”。按照向导提示逐步设定参数选项: - 设置主变量字段为已知的雨量计读数; - 辅助变量指定先前由DEM生成的高度点层; - 方法选取上推荐采用“析取克里金”模式; - 对于变换函数的选择可以考虑应用自然对数(`Log`)来改善分布特性; 以上每一步骤都应仔细核验以保证设置无误后再继续下一步操作。 #### 结果可视化及输出保存 当所有必要参数均已正确指派后,点击运行按钮等待计算结束即可得到最终预测表面图。最后还需记得通过“环境设置”调整好输出成果的空间分辨率、地理范围及其投影方式等细节属性,再将其另存为新的栅格格式文档供进一步利用或分享交流。 ```python import arcpy from arcpy import env env.workspace = "C:/data" arcpy.CheckOutExtension("GeoStats") # Convert raster to points arcpy.RasterToPoint_conversion(in_raster="elevation", out_point_features="dem_points", raster_field="Value") # Perform cokriging analysis using Geostatistical Analyst toolbox cokriging_result = arcpy.sa.Kriging( in_point_features=["rainfall_stations.shp", "dem_points"], z_value_field=['Rainfall', 'ELEVATION'], kriging_model='DISJUNCTIVE', transformation_type='LOG' ) # Save the result as a new raster file with specified properties output_path = r"C:\path\to\save\rainfall_prediction.tif" cokriging_result.save(output_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值