Darknet中函数分析
随机打乱数据
代码在data.c源文件中
void randomize_data(data d)
{
int i;
for(i = d.X.rows-1; i > 0; --i){
// 从最后一个元素位置开始,当前位置为i
int index = rand()%i;// 从i(不包括)之前的所有位置随机选择一个位置index
float *swap = d.X.vals[index]; // 交换index和i处的指针
d.X.vals[index] = d.X.vals[i];
d.X.vals[i] = swap;
swap = d.y.vals[index];
d.y.vals[index] = d.y.vals[i];
d.y.vals[i] = swap;
}
}
可以看到整个打乱过程只有指针指向在不断发生变化,数据在内存中的位置不变。
im2col实现
代码在im2col.c源文件中
float im2col_get_pixel(float *im, int height, int width, int channels,
int row, int col, int channel, int pad)
{
row -= pad;
col -= pad;
if (row < 0 || col < 0 ||
row >= height || col >= width) return 0;
return im[col + width*(row + height*channel)];
}
//From Berkeley Vision's Caffe!
//https://github.com/BVLC/caffe/blob/master/LICENSE
void im2col_cpu(float* data_im, // 输入的图像数据,内存中按行排列成一维
int channels, // 通道数
int height, int width, // 图像的高和宽
int ksize, // 卷积核的高和宽,这里默认卷积核高和宽大小一样
int stride, // 卷积时的步长,这里默认高和宽两个方向上步长一样
int pad, // 图像的填充,这里默认高和宽上填充一样
float* data_col // 最终输出的数据
) {
int c,h,w;
int height_col = (height + 2*pad - ksize) / stride + 1; // 卷积后的图像尺寸,可以想象,其中每个点对应图像的一个卷积区域,卷积区域大小是channels * ksize * ksize,即下面的channels_col。
int width_col = (width + 2*pad - ksize) / stride + 1;
int channels_col = channels * ksize * ksize; // 图像上每个卷积区域展成一列后的大小,比如 // ksize=3,图像通道数为3,那么channels_col为27
for (c = 0; c < channels_col; ++c) {
int w_offset = c % ksize; // 0, 1, 2, 0, 1, 2, 0, 1, 2, ... 宽的相对偏移
int h_offset = (c / ksize) % ksize; // 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, ...高的相对偏移
int c_im = c / ksize / ksize; // 9个0, 9个1, 9个2 通道序号,(c_im, h_offset, w_offset)是卷积区域的相对坐标
for (h = 0; h < height_col; ++h) {
// 有height_col * width_col个卷积区域,遍历每一个卷积区域,对于每个区域,计算它的c位置处的图像像素值
for (w = 0; w < width_col; ++w) {
int im_row = h_offset + h * stride; // 相对于图像的行坐标
int im_col = w_offset + w * stride; // 相对于图像的列坐标
int col_index = (c * height_col + h) * width_col + w; //
data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
im_row, im_col, c_im, pad);
}
}
}
}
这是caffe中卷积操作之前的关键步骤,对三维图像进行变形,将传统卷积操作变成矩阵形式的卷积操作。
简便起见,设channels = 1,即图像是个单通道图。data_im为
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 \begin{matrix} 0 & 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18 & 19 \\ 20 & 21 & 22 & 23 & 24 \\ \end{matrix} 0510152016111621271217223813182349141924
kernel大小为 3 × 3 3\times3 3×3,stride = 1, pad = 0。经过上面函数的处理后,data_col为
0 1 2 5 6 7 10 11 12 1 2 3 6 7 8 11 12 13 2 3 4 7 8 9 12 13 14 5 6 7 10 11 12 15 16 17 6 7 8 11 12 13 16 17 18 7 8 9 12 13 14 17 18 19 10 11 12 15 16 17 20 21 22 11 12 13 16 17 18 21 22 23 12 13 14 17 18 19 22 23 24 \begin{matrix} 0 & 1 & 2 & 5 & 6 & 7 & 10 & 11 & 12 \\ 1 & 2 & 3 & 6 & 7 & 8 & 11 & 12 & 13 \\ 2 & 3 & 4 & 7 & 8 & 9 & 12 & 13 & 14 \\ 5 & 6 & 7 & 10 & 11 & 12 & 15 & 16 & 17 \\ 6 & 7 & 8 & 11 & 12 & 13 & 16 & 17 & 18 \\ 7 & 8 & 9 & 12 & 13 & 14 & 17 & 18 & 19 \\ 10 & 11 & 12 & 15 & 16 & 17 & 20 & 21 & 22 \\ 11 & 12 & 13 & 16 & 17 & 18 & 21 & 22 & 23 \\ 12 & 13 & 14 & 17 & 18 & 19 & 22 & 23 & 24 \\ \end{matrix} 012567101112123678111213234789121314567101112151617678111213161718789121314171819