怎样根据电阻上的色环,判断电阻的大小

    第一条色环:阻值的第一位数字;

  第二条色环:阻值的第二位数字;

  第三条色环:阻值的第三位数字;

  第四条色环:阻值乘数的10的幂数;

  第五条色环:误差(常见是棕色,误差为1%)


在实践中发现,有些色环电阻的排列顺序不甚分明,往往容易读错。在识别时可运用如下技巧加以判断,具体内容如下:

  技巧1:先找标志误差的色环,从而排定色环顺序。最常用的表示电阻误差的颜色是:金、银、棕,尤其是金环和银环,一般绝少用做电阻色环的第一环,所以在电阻上只要有金环和银环,就可以基本认定这是色环电阻的最末一环。

  技巧2:棕色环是否是误差标志的判别。棕色环既常用做误差环,又常作为有效数字环。常常在第一环和最末一环中同时出现,使人很难识别谁是第一环。在实践中可以 按照色环之间的间隔加以判别。比如对于一个五道色环的电阻而言,第五环和第四环之间的间隔比第一环和第二环之间的间隔要宽一些,据此可判定色环的排列顺序。

  技巧3:在仅靠色环间距还无法判定色环顺序的情况下,还可以利用电阻的生产序列值来加以判别。比如有一个电阻的色环读序是:棕、黑、黑、黄、棕,其值为100×104Ω=1MΩ。误差为1%。属于正常的电阻系列值;若是反顺序读:棕、黄、黑、黑、棕,其值为140×100Ω=140Ω,误差为1%。显然,按照后一种排序所读出的电阻值,在电阻的生产系列中是没有的,故后一种色环顺序是不对的。

有些五色环电阻两头金属帽上都有色环,远离相对集中的四道色环的那道色环表示误差,是第五条色环,与之对应的另一头金属帽上的是第一道色环。

  读数时从它读起,之后的第二道、第三道色环是次高位、次次高位,第四道环表示10的多少次方。

  例如:

  某电阻色环电阻顺序为:红(2)-黑(0)-黑(0)-黑- 棕,则它表示该电阻阻值为:200 &TImes; 10(0次幂)Ω。

  再如,棕-黑-黑-红-棕,表示该电阻阻值为:100 &TImes; 10(2次幂)Ω = 10000Ω = 10KΩ。

  可见,四色环电阻误差为5-10%,五色环常为1%,精度提高。

  例如:有电阻 黄紫红橙棕 前三位数字是 472,第四位表示 10 的 3 次方,即1000;阻值为:472&TImes;1000欧 = 472千欧,即472KΩ。



OpenCV(Open Source Computer Vision Library)是一款开源的计算机视觉库,专门为图像和视频处理任务设计,广泛应用于学术研究、工业应用以及个人项目中。以下是关于OpenCV的详细介绍: 历史与发展 起源:OpenCV于1999年由英特尔公司发起,旨在促进计算机视觉技术的普及和商业化应用。该项目旨在创建一个易于使用、高效且跨平台的库,为开发者提供实现计算机视觉算法所需的基础工具。 社区与支持:随着时间的推移,OpenCV吸引了全球众多开发者和研究人员的参与,形成了活跃的社区。目前,OpenCV由非盈利组织OpenCV.org维护,并得到了全球开发者、研究机构以及企业的持续贡献和支持。 主要特点 跨平台:OpenCV支持多种操作系统,包括但不限于Windows、Linux、macOS、Android和iOS,确保代码能够在不同平台上无缝运行。 丰富的功能:库中包含了数千个优化过的函数,涵盖了计算机视觉领域的诸多方面,如图像处理(滤波、形态学操作、色彩空间转换等)、特征检测与描述(如SIFT、SURF、ORB等)、物体识别与检测(如Haar级联分类器、HOG、DNN等)、视频分析、相机校正、立体视觉、机器学习(SVM、KNN、决策树等)、深度学习(基于TensorFlow、PyTorch后端的模型加载与部署)等。 高效性能:OpenCV代码经过高度优化,能够利用多核CPU、GPU以及特定硬件加速(如Intel IPP、OpenCL等),实现高速图像处理和实时计算机视觉应用。 多语言支持:尽管OpenCV主要使用C++编写,但它提供了丰富的API绑定,支持包括C、Python、Java、MATLAB、JavaScript等多种编程语言,方便不同领域的开发者使用。 开源与免费:OpenCV遵循BSD开源许可证发布,用户可以免费下载、使用、修改和分发库及其源代码,无需担心版权问题。 架构与核心模块 OpenCV的架构围绕核心模块构建,这些模块提供了不同层次的功能: Core:包含基本的数据结构(如cv::Mat用于图像存储和操作)、基本的图像和矩阵操作、数学函数、文件I/O等底层功能。 ImgProc:提供图像预处理、滤波、几何变换、形态学操作、直方图计算、轮廓发现与分析等图像处理功能。 HighGui:提供图形用户界面(GUI)支持,如图像和视频的显示、用户交互(如鼠标事件处理)以及简单的窗口管理。 VideoIO:负责视频的读写操作,支持多种视频格式和捕获设备。 Objdetect:包含预训练的对象检测模型(如Haar级联分类器用于人脸检测)。 Features2D:提供特征点检测(如SIFT、ORB)与描述符计算、特征匹配与对应关系估计等功能。 Calib3d:用于相机标定、立体视觉、多视图几何等问题。 ML:包含传统机器学习算法,如支持向量机(SVM)、K近邻(KNN)、决策树等。 DNN:深度神经网络模块,支持导入和运行预训练的深度学习模型,如卷积神经网络(CNN)。 应用领域 OpenCV广泛应用于: 科研与教育:作为计算机视觉教学和研究的基础工具,OpenCV简化了算法原型开发与验证过程。 工业自动化:在视觉检测、机器人导航、产品质量控制等工业场景中,OpenCV用于实时图像分析与决策。 安防监控:用于人脸识别、行人检测、行为分析等智能监控系统。 医疗影像分析:在医疗领域,OpenCV可用于医学图像处理、病灶检测、诊断辅助等应用。 自动驾驶:在车辆视觉感知系统中,OpenCV用于道路标志识别、障碍物检测、车道线识别等任务。 多媒体应用:如图像编辑软件、AR/VR应用、游戏开发等,利用OpenCV进行图像和视频处理。 物联网与嵌入式系统:在资源受限的嵌入式设备上,OpenCV提供轻量级的计算机视觉解决方案。 学习与社区资源 OpenCV拥有丰富的官方文档、教程、示例代码以及活跃的开发者社区,包括GitHub、StackOverflow、官方论坛等,为学习和使用OpenCV提供了有力支持。此外,有许多书籍、在线课程、博客文章和研讨会专门讲解OpenCV的使用和计算机视觉技术。 综上所述,OpenCV作为一款功能强大、高效、跨平台且开源的计算机视觉库,为开发者提供了实现各类图像和视频处理任务所需的工具箱,其广泛的应用领域和活跃的社区支持使之成为计算机视觉领域不可或缺的开发工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值