Latent-Shift: Latent Diffusion with Temporal Shift for Efficient Text-to-Video Generation学习笔记

Latent-Shift方法针对文本到视频生成的挑战,如缺少大规模数据和时间维度建模的复杂性,提出了一种无参数的时间偏移模块。该模块通过混合相邻信息与当前帧来处理空间和时间信息,尤其应用在2DResNet块中。实验表明,这种方法能提高效率并优化生成过程。
摘要由CSDN通过智能技术生成

Latent-Shift: Latent Diffusion with Temporal Shift for Efficient Text-to-Video Generation


在这里插入图片描述
motivation:
t2v两个挑战:缺乏大规模高质量文本视频数据、时间维度建模较为复杂
基于像素的t2v需要妥协,先生成低分辨率视频,然后超分插帧
contribution:
提出 a parameter-free temporal shift module(无参数的时间偏移模块)

method

temporal shift

将相邻信息与当前帧混合来处理空间和时间信息
在这里插入图片描述
Z ∈ R C × F × H × W Z\in\mathbb{R}^{C\times F\times H\times W} ZRC×F×H×W为输入, Z i ∈ R C × H × W Z_i\in\mathbb{R}^{C\times H\times W} ZiRC×H×W表示第 i i i帧,沿通道维度分解为 Z i 1 Z_i^1 Zi1 Z i 2 Z_i^2 Zi2 Z i 3 Z_i^3 Zi3,其中 Z i j ∈ R C 3 × H × W Z_{i}^{j}\in\mathbb{R}^{\frac{C}{3}\times H\times W} ZijR3C×H×W
i i i帧输出如下:
图片描述
在这里插入图片描述temporal shift模块加在2D ResNet block模块中。

experiments

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值