SimDA: Simple Diffusion Adapter for Efficient Video Generation学习笔记

本文介绍了一种新的视频生成方法,通过空间和时间适配器,特别是Latent-ShiftAttention,以降低计算成本并提升生成质量。实验对比了其优势和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SimDA: Simple Diffusion Adapter for Efficient Video Generation学习笔记


在这里插入图片描述


motivation: 现有的T2V模型要么从头开始训练,或将大型T2I模型适应视频,需要大量计算资源和数据
contribution: 设计轻量级spatial and temporal adapters(空间和时间适配器)进行迁移学习;将原始spatial attention(空间注意力)更改为所提出的 Latent-Shift Attention (LSA),以实现时间一致性。

method

在这里插入图片描述提出三个模块:Spatial Adapter、Temporal Adapter、Latent-Shift Attention
Spatial Adapter:利用视频生成领域的空间信息,分为Attention Adapter 和 FFN Adapter,结构:两个全连接层中间一个激活层
Temporal Adapter:建模时间信息
以前的方法结合了时间卷积或temporal attention modules(时间注意模块)来捕获时间关系。具有大量参数和高维输入特征,导致计算量和训练成本显着。
时间适配器模块采用深度卷积而不是中间激活层
Latent-Shift Attention:实现时间一致性
除了考虑当前帧中的标记外,我们进一步沿时间维度进行补丁级移位操作,以将标记从前面的 T 帧转移到当前帧上,从而组成一个新的潜在特征帧
在这里插入图片描述
Q = W q ( x z i ) , (6) K = W k [ x z i , x z s h i f t ] , ( 7 ) V = W v [ x z i , x z s h i f t ] , ( 8 ) \begin{aligned} &\mathbf{Q}=\mathbf{W}_{\mathrm{q}}(x_{z_{i}}),&& \text{(6)} \\ &\mathbf{K}=\mathbf{W}_{\mathrm{k}}[x_{z_{i}},x_{z_{shift}}],&& \left(7\right) \\ &\mathbf{V}=\mathbf{W}_{\mathrm{v}}[x_{z_{i}},x_{z_{shift}}],&& \left(8\right) \end{aligned} Q=Wq(xzi),K=Wk[xzi,xzshift],V=Wv[xzi,xzshift],(6)(7)(8)

experinment

与其他方法的比较

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

Ablation study

temporal adapter
在这里插入图片描述
依赖temporal attention modeling(时间注意建模)的方法(如Tune-A-Video[100])相比,temporal adapter(时间适配器)更轻量级,并获得了更好的编辑结果
在这里插入图片描述
TA:Temporal Adapter
SA:Spatial Adapter
AA:Attention Adapter
FA:FFN Adapter
LSA:Latent-shift Attention

### 关于Scene Diffusion连续场景生成用于LiDAR模拟的研究 目前,关于 **Scene Diffusion Continuous Scenario Generation for LiDAR Simulation** 的具体研究尚未广泛公开提及。然而,可以推测该主题可能涉及扩散模型(Diffusion Models)在激光雷达(LiDAR)数据生成中的应用。这种技术的核心在于通过生成对抗网络(GAN)、变分自编码器(VAE)或者更先进的扩散模型来合成逼真的三维点云数据。 #### 扩散模型简介 扩散模型是一种基于马尔可夫链的概率生成模型,其核心思想是通过对噪声逐步去噪的过程重建目标分布的数据[^4]。这类模型已经在图像生成领域取得了显著成果,并逐渐扩展到其他模态的数据生成任务中,例如音频、视频甚至三维点云。 #### 应用背景 激光雷达传感器作为自动驾驶汽车的重要组成部分之一,能够提供高精度的环境几何信息。然而,实际采集的真实世界LiDAR数据往往受到天气条件、光照变化等因素的影响,从而增加了算法开发和验证的成本。因此,利用仿真工具生成多样化的LiDAR扫描数据成为一种有效的替代方案。 #### 技术实现思路 以下是构建此类系统的潜在技术路径: 1. 数据预处理阶段:收集大量真实世界的LiDAR测量值并将其转换成统一格式供后续训练使用; 2. 模型架构设计方面可以选择引入U-Net风格的encoder-decoder结构配合注意力机制增强局部细节表现力;同时结合时间步嵌入向量调节不同演化阶段特性表达能力。 3. 训练过程中采用均方误差损失函数衡量预测结果与原始输入之间的差异程度,并辅以额外正则项约束促进泛化性能提升。 ```python import torch.nn as nn class UNetBlock(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding='same'), nn.ReLU(), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same'), nn.ReLU(), nn.BatchNorm2d(out_channels) ) def forward(self, x): return self.conv(x) def unet_model(): model = nn.Sequential( UNetBlock(64, 128), # Example layer definition ... ) return model ``` 尽管上述描述提供了理论框架指导,但针对特定应用场景优化调整参数设置仍需深入探索实践检验效果如何达到最佳平衡状态。 ### 下载资源建议 如果正在寻找与此相关的学术文章全文链接下载方式,推荐访问以下几个知名开源平台尝试检索获取: - arXiv.org: https://arxiv.org/ - ResearchGate.net: https://www.researchgate.net/ - Google Scholar: https://scholar.google.com/ 另外值得注意的是部分高质量期刊会议论文可能会有订阅权限限制情况存在,在这种情形下考虑联系作者请求副本或许不失为一条可行途径。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值