SimDA: Simple Diffusion Adapter for Efficient Video Generation学习笔记

SimDA: Simple Diffusion Adapter for Efficient Video Generation学习笔记


在这里插入图片描述


motivation: 现有的T2V模型要么从头开始训练,或将大型T2I模型适应视频,需要大量计算资源和数据
contribution: 设计轻量级spatial and temporal adapters(空间和时间适配器)进行迁移学习;将原始spatial attention(空间注意力)更改为所提出的 Latent-Shift Attention (LSA),以实现时间一致性。

method

在这里插入图片描述提出三个模块:Spatial Adapter、Temporal Adapter、Latent-Shift Attention
Spatial Adapter:利用视频生成领域的空间信息,分为Attention Adapter 和 FFN Adapter,结构:两个全连接层中间一个激活层
Temporal Adapter:建模时间信息
以前的方法结合了时间卷积或temporal attention modules(时间注意模块)来捕获时间关系。具有大量参数和高维输入特征,导致计算量和训练成本显着。
时间适配器模块采用深度卷积而不是中间激活层
Latent-Shift Attention:实现时间一致性
除了考虑当前帧中的标记外,我们进一步沿时间维度进行补丁级移位操作,以将标记从前面的 T 帧转移到当前帧上,从而组成一个新的潜在特征帧
在这里插入图片描述
Q = W q ( x z i ) , (6) K = W k [ x z i , x z s h i f t ] , ( 7 ) V = W v [ x z i , x z s h i f t ] , ( 8 ) \begin{aligned} &\mathbf{Q}=\mathbf{W}_{\mathrm{q}}(x_{z_{i}}),&& \text{(6)} \\ &\mathbf{K}=\mathbf{W}_{\mathrm{k}}[x_{z_{i}},x_{z_{shift}}],&& \left(7\right) \\ &\mathbf{V}=\mathbf{W}_{\mathrm{v}}[x_{z_{i}},x_{z_{shift}}],&& \left(8\right) \end{aligned} Q=Wq(xzi),K=Wk[xzi,xzshift],V=Wv[xzi,xzshift],(6)(7)(8)

experinment

与其他方法的比较

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

Ablation study

temporal adapter
在这里插入图片描述
依赖temporal attention modeling(时间注意建模)的方法(如Tune-A-Video[100])相比,temporal adapter(时间适配器)更轻量级,并获得了更好的编辑结果
在这里插入图片描述
TA:Temporal Adapter
SA:Spatial Adapter
AA:Attention Adapter
FA:FFN Adapter
LSA:Latent-shift Attention

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值