QKeras、Brevitas和QONNX量化工具对比
一、引言
在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点、应用场景及优缺点。
二、量化工具概述
QKeras
定位与背景:
QKeras是由Google开发的Keras扩展库,专为TensorFlow生态系统设计,旨在简化深度学习模型的量化过程。
核心特性:
- 量化粒度:支持对权重、激活函数、偏置和其他参数进行精细化量化
- 量化方案:提供多种量化器,包括线性量化、对数量化、二值化和三值化等
- 训练方法:支持量化感知训练(QAT),允许在训练过程中模拟量化效果
- 硬件优化:针对TPU和部分边缘设备进行了优化
技术架构:
- 通过继承和扩展Keras层实现量化功能
- 保留Keras的API设计理念,使用
QDense
、QConv2D
等替代原始层 - 内部实现了多种量化器函数,如
quantized_bits
、quantized_relu
等
GitHub链接:https://github.com/google/qkeras
Brevitas
定位与背景:
Brevitas是由Xilinx开发的PyTorch量化库,专注于硬件感知量化和FPGA部署,为追求极致性能的场景提供精细控制。
核心特性:
- 硬件感知:提供针对FPGA和ASIC优化的量化方案
- 精确控制:支持逐层、逐通道甚至逐元素的精细量化控制
- 量化表示:支持定点、浮点、2/4/8位整数等多种表示方式
- 集成能力:与FINN编译器集成,支持直接编译到FPGA硬件
技术架构:
- 基于PyTorch的nn.Module实现,提供QuantLayer、QuantLinear等量化层
- 采用可配置的量化器(Quantizer)架构,支持权重、激活函数独立配置
- 提供量化状态追踪机制,便于分析和调试量化过程
GitHub链接:https://github.com/Xilinx/brevitas
QONNX
定位与背景:
QONNX是基于ONNX标准的量化扩展,专注于提供框架无关的量化模型表示和交换格式,增强模型的互操作性。
核心特性:
- 标准化表示:定义了统一的量化操作表示方法,便于不同框架间交换
- 互操作性:支持将各种框架的量化模型转换为标准格式
- 部署灵活性:便于在不同硬件平台和推理引擎上部署
- 工具链集成:与多种模型优化和部署工具链兼容
技术架构:
- 扩展ONNX标准,添加量化特定的操作符和属性
- 提供模型转换工具,支持从TensorFlow、PyTorch等框架导入导出
- 实现量化参数的统一表示和处理机制
GitHub链接:https://github.com/microsoft/qonnx
三、技术深度对比
量化精度与灵活性
QKeras:
- 提供8种以上的量化器类型,支持2-32位任意精度
- 允许为每层单独配置量化参数,但不支持通道级量化
- 实现了Po2(2的幂次方)量化,适合无乘法器硬件
- 量化代码示例:
from qkeras import QDense, QActivation # 8位量化,1位用于整数部分 layer = QDense(64, kernel_quantizer="quantized_bits(8,1)") # 带有量化激活函数 activation = QActivation("quantized_relu(8)")
Brevitas:
- 支持更细粒度的量化控制,包括通道级和元素级量化
- 提供硬件感知量化原语,可精确匹配目标硬件约束
- 支持非均匀量化和混合精度量化
- 量化代码示例:
from brevitas.nn import QuantLinear from brevitas.quant import Int8WeightPerTensorFloat # 8位整数量化,按张量进行权重量化 layer = QuantLinear( in_features=64, out_features=32, weight_quant=Int8WeightPerTensorFloat )
QONNX:
- 专注于量化表示的标准化,而非具体量化算法
- 支持多种量化格式的统一表示,包括对称/非对称、逐张量/逐通道
- 提供量化参数的明确表示,便于跨平台交换
- 模型转换示例:
import qonnx.core.onnx_exec as oxe # 将量化模型转换为QONNX格式 qonnx_model = oxe.execute_onnx( model, input_dict, return_full_exec_context=True )
训练与推理支持
QKeras:
- 完整支持量化感知训练,与Keras训练流程无缝集成
- 提供自动量化配置搜索工具(AutoQKeras)
- 支持模拟量化效果的前向传播,便于评估量化影响
- 与TensorFlow模型优化工具链集成度高
Brevitas:
- 支持训练时量化和后训练量化
- 提供多种量化训练策略,包括STE(直通估计器)和LSQ(可学习步长量化)
- 与PyTorch训练生态完全兼容,支持分布式训练
- 提供针对FPGA的训练后优化工具
QONNX:
- 主要关注模型表示和交换,不直接提供训练功能
- 支持将训练好的量化模型转换为标准格式
- 提供量化参数分析和调整工具
- 与多种推理引擎和硬件后端兼容
部署与硬件支持
QKeras:
- 与TensorFlow Lite和TensorFlow.js集成良好
- 针对Google TPU和部分边缘设备优化
- 支持通过TensorFlow工具链导出到多种硬件平台
- 在移动设备上部署相对简单
Brevitas:
- 与FINN编译器深度集成,支持直接编译到FPGA
- 针对Xilinx FPGA系列优化,提供硬件资源估算
- 支持导出到多种格式,包括ONNX和PyTorch TorchScript
- 提供FPGA特定的量化原语和优化
QONNX:
- 作为中间表示格式,支持多种硬件后端
- 与ONNX Runtime、TensorRT等推理引擎兼容
- 提供模型验证和比较工具,确保量化前后行为一致
- 便于在异构计算环境中部署
四、总结
QKeras、Brevitas和QONNX代表了深度学习量化领域的三种不同技术路线,分别面向不同的用户群体和应用场景。选择合适的量化工具需要综合考虑现有技术栈、目标硬件平台、性能要求和开发资源等因素。
- QKeras适合已经使用Keras/TensorFlow的团队,提供最平滑的入门体验和快速实验能力。
- Brevitas为PyTorch用户提供精细的量化控制,特别适合FPGA部署和硬件感知优化。
- QONNX专注于量化模型的标准化表示,适合需要跨平台部署和长期维护的企业级应用。
随着边缘计算和AI硬件多样化的发展,量化技术将继续扮演连接深度学习模型与高效硬件执行的桥梁角色。深入理解这些工具的技术特点和适用场景,将帮助开发者在实际应用中做出更明智的选择。