题目描述 Description
小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。
输入输出格式 Input/output
输入格式:
第一行两个整数n,m,表示点的个数和边的个数。
接下来m行每行两个数字u,v,表示一条u到v的边。
输出格式:
一行一个数字,表示到公司的最少秒数。
第一行两个整数n,m,表示点的个数和边的个数。
接下来m行每行两个数字u,v,表示一条u到v的边。
输出格式:
一行一个数字,表示到公司的最少秒数。
4 4
1 1
1 2
2 3
3 4
1 1
1 2
2 3
3 4
1
思路:2^k容易想到倍增,细想一下觉得挺简单。
注意:inf不要取太大,容易超限。
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn=65;
int n,m,f[maxn][maxn];
bool map[maxn][maxn][maxn];
inline int get(){
char c;while(!isdigit(c=getchar()));
int v=c-48;while(isdigit(c=getchar()))v=v*10+c-48;
return v;
}
int main(){
memset(map,0,sizeof(map));
n=get();m=get();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)f[i][j]=maxn;
for(int i=1;i<=m;++i){
int x=get(),y=get();
map[x][y][0]=1;
f[x][y]=1;
}
for(int k=1;k<=maxn;++k)
for(int p=1;p<=n;++p)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j){
if(map[i][p][k-1]&&map[p][j][k-1]){
map[i][j][k]=1;
f[i][j]=1;
}
}
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j){
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
}
printf("%d\n",f[1][n]);
return 0;
}