阿里腾讯云 hadoop+spark集群搭建(1)

阿里腾讯云 hadoop+spark集群搭建(1)

linux版本: centos7

hadoop版本: 3.1.1

手上有三台学生机,完全没动过的:一台是阿里云服务器,两台是腾讯云。

用阿里云做namenode,腾讯云做datanode。

目标是搭好hdfs和yarn,后面搭spark和hive。


  1. 更新和下载软件包。安装jdk 版本为1.8.0

    $ sudo yum -y update
    $ sudo yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel.x86_64 net-tools rsync mlocate wget vim gcc zlib-dev openssl-devel sqlite-devel bzip2-devel python-devel 

    这里通过yum安装的jdk路径默认是在 /usr/lib

    查找方法为:

    $ whereis java  
    (返回java: /usr/bin/java /usr/lib/java /etc/java....)
    $ ll /usr/bin/java  
    (返回/usr/bin/java -> /etc/alternatives/java,是软链接)
    $ ll /etc/alternatives/java 
    (返回/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-0.el7_5.x86_64/jre/bin/java)

    由于系统中可能有多版本的jdk,/etc/alternatives/java软链接用于指定真正使用的jdk版本。

    /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-0.el7_5.x86_64就是安装的位置。

  2. 设置安全规则(针对namenode)

    上阿里云加入安全组规则,由于是作学习用,直接加入规则

    端口范围: 1/65530  授权对象:0.0.0.0/0 
  3. 关闭防火墙

    $ sudo systemctl stop firewalld.service 
    $ sudo systemctl disable firewalld.service
  4. 修改hosts文件,这里要注意!

    阿里云namenode,其hosts如下:

    111.**.**.*8   slave1  (这里写的是腾讯云服务器的外网IP)
    134.**.**.*16  slave2  (这里写的是腾讯云服务器的外网IP)
    192.**.*.*12   master  (这里写的是阿里云服务器的内网IP)

    腾讯云的两台datanode,其hosts如下:

    39.**.2**.*2 master    (这里写的是阿里云服务器的外网IP)
    172.**.*.9 slave1      (这里写的是腾讯云服务器的外网IP)
    172.**.*.7 slave2       (这里写的是腾讯云服务器的外网IP)
  5. 建立新用户并赋予其权限

    $ adduser hadoop
    $ passwd hadoop
    (输入hadoop用户的密码)
    $ su hadoop

    此时从root身份切换到hadoop。

  6. 设置ssh免密登陆

    每台机器生成公私钥,namenode把自己的公钥拷到两个datanode中。datanode把自己的公钥拷到namenode中,并将可靠的公钥信息写入/.ssh/authorized_keys文件中。

  7. 下载hadoop并解压缩,并建立所需文件夹

    $ curl -O https://www-us.apache.org/dist/hadoop/common/hadoop-3.1.1/hadoop-3.1.1.tar.gz
    $ mkdir hadoop
    $ tar -zxvf hadoop-3.1.1.tar.gz -C ~/hadoop/
    $ cd hadoop/hadoop-3.1.1
    <!--在Hadoop目录下建立tmp、dfs文件夹,并在dfs文件夹下建立data和name-->
    <!--tmp用于存放缓存,dfs设置为hdfs信息的存放路径-->
    $ mkdir tmp & mkdir dfs
    $ cd dfs
    $ mkdir data & mkdir name
  8. 配置文件与环境变量

    配置core-site.xml、hdfs-site.xml、yarn-site.xml、workers、hadoop-env.sh。

     

    • core-site.xml

      <configuration>
          <property>
              <name>fs.defaultFS</name>
              <value>hdfs://master:9000/</value>
          </property>
          <property>
               <name>hadoop.tmp.dir</name>
              <value>/home/hadoop/hadoop/hadoop-3.1.1/tmp/</value>
          </property>
      </configuration>
    • hdfs-site.xml

      <configuration>
          <property>
              <name>dfs.namenode.name.dir</name>
              <value>/home/hadoop/hadoop/hadoop-3.1.1/dfs/name</value>
          </property>
          <property>
              <name>dfs.datanode.data.dir</name>
              <value>/home/hadoop/hadoop/hadoop-3.1.1/dfs/data</value>
          </property>
          <property>
              <name>dfs.http.address</name>
              <value>0.0.0.0:50070</value>
          </property>
          <property>
              <name>dfs.namenode.secondary.http-address</name>
              <value>master:9001</value>
          </property>
          <property>
          <name>dfs.webhdfs.enabled</name>
          <value>true</value>
          </property>
      </configuration>
    • yarn-site.xml

      <configuration>
           <property>
               <name>yarn.resourcemanager.hostname</name>
              <value>master</value>
          </property>
          <property>
              <name>yarn.resourcemanager.webapp.address</name>
              <value>master:8088</value>
          </property>
          <property>
              <name>yarn.nodemanager.aux-services</name>
              <value>mapreduce_shuffle</value>
          </property>
      </configuration>
    • hadoop-env.sh

      在第54行处加入JAVA_HOME变量。

      # The java implementation to use. By default, this environment
      # variable is REQUIRED on ALL platforms except OS X!
      export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-0.el7_5.x86_64/jre
    • workers

      slave1
      ​
      slave2

    接下来,在/etc/profile.d下新建两个脚本 jdk-1.8.shhadoop-3.1.1.sh

    • jdk-1.8.sh

      # !/bin/sh
      export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-0.el7_5.x86_64
      export JRE_HOME=${JAVA_HOME}/jre
      export PATH=${JRE_HOME}/bin:$PATH
      (因为java是在$JAVA_HOME/jre/bin之中的,所以PATH中不是$JAVA_HOME而是$JRE_HOME)
    • hadoop-3.1.1.sh

      #!/bin/sh
      export HADOOP_HOME="/home/hadoop/hadoop/hadoop-3.1.1"
      export PATH="$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH"
      export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
      export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
    $ source /etc/profile 

    这样每次服务器启动,都会自动运行这两个脚本,设置好相关的环境变量。

  9. 格式化hdfs并开启(在namenode上)

    $ hdfs namenode -format
    $ start-all.sh
    <!-- 启动... -->

    成功的话,namenode中执行jps命令会显示4个进程:

    $ jps
    11270 SecondaryNameNode
    26747 Jps
    11052 NameNode
    11487 ResourceManager

    datanode中执行jps命令会显示3个进程:

    $ jps
    18468 DataNode
    23029 Jps
    18605 NodeManager

    访问namenode公网的8088端口,Active Nodes 显示为2。

    访问namenode公网的50070端口,

    完成。


如果namenode或者datanode在启动时碰到问题,就使用对应的机器进入到其hadoop目录下的logs文件夹中查看日志信息,再根据日志信息去解决问题。

注意一个问题:

如果你执行了多次hdfs namenode -format,会出现datanode无法成功启动的情况,此时50070页面Live Nodes为0,8088页面为2。

原因是该命令清空了hadoop目录下dfs/data下的数据,但是对于datanode却没有,导致版本对不上号,解决办法是:删除datanode中dfs/data下的数据,重新启动。不要随意执行namenode的format命令。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值