深度学习和人工智能
文章平均质量分 86
Unknown To Known
这个作者很懒,什么都没留下…
展开
-
ICML2021 | RSD: 一种基于几何距离的可迁移回归表征学习方法
dSprites中有4个回归任务和1个分类任务,如下表所示,但由于方向(Orientation)任务无法完全解耦(不同形状的物体,旋转角度的周期性不同),所以我们在此数据集中的回归任务为物体大小(Scale)和位置的横纵坐标(Position X, Position Y)。相关的图像示例如下图所示,由于共有3个领域,所以共可构建6个迁移任务。原创 2023-10-16 10:27:17 · 941 阅读 · 0 评论 -
机器学习的原理是什么?
模型(Model):模型就像是电脑的“大脑”的决策用来处理和学习数据。你可以想象它为一个迷工厂,输入数据进去,输出结果。数据集(Dataset):数据集就是用来训练模型的大量信息。这些信息可能是文字、图像、声音等。标签(Label):标签是对数据集中每一项数据的解释或标记。比如,在一个由猫和狗照片组成的数据集中,每张照片会被标签为“猫”或“狗”。训练(Train)和测试(Test):训练是让模型从标签好的数据集中学习的过程。测试则是检查模型是否真的学会了某件事。原创 2023-10-14 10:45:54 · 964 阅读 · 1 评论 -
如何理解python中sklearn的逻辑回归,并用简单实例练习?
然而,逻辑回归也有一些限制,比如不能很好地处理非线性关系,对异常值敏感等,在处理复杂的分类问题时,可能需要采用其他更强大的算法。逻辑回归模型是通过fit方法进行训练的,然后使用predict方法对新的样本进行分类预测。准确率是一个常用的评估指标,用来衡量分类器的性能,其取值范围在0到1之间,越接近1表示模型预测的准确率越高。, wn是模型的参数,x1, x2, …模型的目标是通过拟合训练数据,找到最佳的参数值使得预测的概率尽可能地接近真实的类别标签。其中,h(x)表示预测的概率,z表示线性回归模型的输出。原创 2023-06-15 11:00:50 · 1413 阅读 · 1 评论 -
【深度学习入门视频推荐和常用统计函数 】
主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。因子分析是基于降维的思想,在尽可能不损失或者少损失原始数据信息的情况下,将错综复杂的众多变量聚合成少数几个独立的公共因子,这几个公共因子可以反映原来众多变量的主要信息,在减少变量个数的同时,又反映了变量之间的内在联系。分类是一种典型的有监督的机器学习方法,其目的是从一组已知类别的数据中发现分类模型,以预测新数据的未知类别。原创 2023-02-08 11:20:46 · 302 阅读 · 0 评论