Stable Diffusion零基础学习

Stable Diffusion学习笔记TOP06


@@_图生图参数详解02

重绘幅度
重绘幅度:指在‌Stable Diffusion中进行图生图操作时,用于控制新生成图像与原图像差异程度的参数。
在这里插入图片描述重绘幅度实际上表示的是添加到输出图像的噪声量,重绘幅度值越大,图像变化越多,新图像与原图像的差异越大;重绘幅度值越小,图像变化越少,保留原图像细节越多;
在这里插入图片描述可以根据不同需求调整重绘幅度,达到控制输出结果与输出图像相似度的作用。
在这里插入图片描述

重绘幅度的具体数值范围和影响‌:

重绘幅度的推荐区间为0.250.7。
在这个范围内,数值越小,保留原本图像的细节越多;
数值越大,新图像与原图像的差异越大。
例如:0.10.3的重绘幅度变化微乎其微,
而0.40.5的重绘幅度则会显著改变图像的某些细节。

如何调整重绘幅度以获得最佳效果‌:

为了获得最佳效果,可以根据具体需求调整重绘幅度。
如果希望保留原图的大部分细节,可以选择较小的重绘幅度(如0.250.4);
如果希望生成与原图差异较大的新图像,可以选择较大的重绘幅度(如0.60.7)。
此外,还可以通过固定随机种子来确保每次生成相同的内容,这对于需要重复生成相同效果的用户非常有用。

内补绘制功能:局部重绘
局部重绘:只对局部进行图生图的相关处理;通过手涂蒙版工具对需要局部修改的部分进行图生图处理。
在这里插入图片描述蒙版边缘模糊度:在这里充当重绘部分羽化的功能;使局部生成部分看起来更加贴近图中狗部分的图像,不会显得很突兀。SD自带的算法不会去考虑狗与重绘部分之间的关系,所以这个时候就需要用到SD插件的模型算法,来让重绘部分完美融合进狗的部分。

重绘:蒙版区域 - 眼镜 - 围巾
正向提示词:正面写实,画面质量 + 需要生成元素的提示词(眼镜 + 围巾)
反向提示词:万能通用版本
请添加图片描述
插件:ControlNet
预处理器:inpaint_only(仅局部重绘)

局部重绘是一种图像处理技术,它允许在不改变整体图片构图的情况下,对图片的某个区域进行重新绘制。‌这种技术利用蒙版来区分需要处理的区域和不需要处理的区域,使得用户可以精确地控制图像的修改范围,避免对整个图像进行大规模的调整。


内补绘制功能:涂鸦
涂鸦:同样是基于图生图的基础理论,可以通过对输入图像涂鸦上色从而改变原图与随机种子噪声图组合而成的原始噪声图。
在这里插入图片描述从上图可以看出我们通过涂鸦改变了输入图像的原本结构与颜色(红色部分——红花,绿色部分——绿植),所以SD就会根据提示词引导噪声图扩散出对应元素特征的噪声部分。
在Stable Diffusion(SD)中,涂鸦指的是使用画笔在图片上画色块,并附带对应的提示词。SD会根据这些提示词和色块寻找对应的元素进行生成,可以简单地理解为一种AI版的你画我猜。这种技术允许用户在图片上进行创作,通过涂鸦来表达自己的想法或需求,而SD则会基于这些涂鸦和提示词生成新的图像或元素。


学习Stable Diffusion进行AI绘画艺术创作,需要从理论知识到实际操作两方面入手。《Stable Diffusion AI绘画教程:从入门到精通》是一份非常适合的资源,它提供了一个由浅入深的学习路径,旨在帮助初学者掌握商业级别的AI绘画技能。 参考资源链接:[Stable Diffusion AI绘画教程:从入门到精通](https://wenku.csdn.net/doc/4nw3nprt3s?spm=1055.2569.3001.10343) 首先,理论知识的学习是必不可少的。教程会详细讲解Stable Diffusion的原理,包括它所涉及的深度学习模型,如变分自编码器(VAE)和生成对抗网络(GAN)。理解这些基础概念对于深入掌握Stable Diffusion至关要,因为它们是决定生成图像质量的关键因素。 其次,实际操作能力的培养同样要。视频教程中的实操演示环节会指导学习者如何安装和配置必要的软件环境,包括任何必要的编程语言和框架。学习者将通过实际操作来熟悉Stable Diffusion的使用流程,学习如何为模型提供正确的输入,以及如何解读和调整模型生成的输出。 此外,个性化的指导部分能够帮助学习者在实践中遇到具体问题时找到解决方案,例如如何调整参数以得到理想的艺术风格,或是如何处理图像合成和风格迁移等高级应用。这部分内容对于学习者来说尤其宝贵,因为它能够帮助他们在遇到难题时获得及时的帮助,从而不断进步。 通过综合学习教程中的理论和实操部分,学习者将能够从零开始,逐步建立起使用Stable Diffusion进行AI绘画艺术创作的能力。掌握这些技能后,学习者不仅能在个人艺术创作上有所突破,还可以将这些技能应用于商业设计中,创作出符合市场需求的高质量艺术作品。 完成教程学习后,学习者可以考虑进一步深入研究其他相关资源,如软希网提供的多种类型的学习材料,以继续扩展知识和技能。 参考资源链接:[Stable Diffusion AI绘画教程:从入门到精通](https://wenku.csdn.net/doc/4nw3nprt3s?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值