SD绘画 | 图生图-基础使用介绍—重绘幅度与缩放模式

重绘幅度

重绘幅度越大,出图与原图差异越大。

img

重绘幅度=0.7

img

重绘幅度=0.3

img

缩放模式

目前有以下四种缩放模式:

imgimage-20240719150656014

原图的宽高是1080x1440,当修改宽高,与原图不一致时,可选择其中一种缩放模式来处理图片。

仅调整大小

缩放模式选择仅调整大小,修改重绘尺寸=1440x1440.

img

出图被横向拉伸,如下所示:

img

裁剪后缩放

出图上下部分被裁剪掉,如下所示:

img

缩放后填充空白

出图左右两边空白的位置,直接用一些色块来填补画面,如下所示:

img

调整大小(潜在空间放大)

使用 Latent放大算法 进行放大,该放大算法的特点是生成速度快,但画面会比较模糊。一般不建议使用该缩放模式

出图如下所示:

img

缩放模式总结

这4种缩放模式,实际上都是一种弥补处理的方式,最好的处理方式是:生成的图片与原图的宽高比匹配,避免画面变形的情况。

通过点击 📐 按钮来获取原图的宽高:

img

如果需要等比例缩小/放大画面,可以通过「重绘尺寸倍数」来实现:

img

出图如下所示(记得恢复默认的缩放模式=仅调整大小):

img

今天先分享到这里~

现在AI绘画还是发展初期,大家都在摸索前进。

但新事物就意味着新机会,我们普通人要做的就是抢先进场,先学会技能,这样当真正的机会来了,你才能抓得住。

如果你对AI绘画感兴趣,我可以分享我在学习过程中收集的各种教程和资料。

学完后,可以毫无问题地应对市场上绝大部分的需求。

这份AI绘画资料包整理了Stable Diffusion入门学习思维导图Stable Diffusion安装包120000+提示词库,800+骨骼姿势图,Stable Diffusion学习书籍手册AI绘画视频教程AIGC实战等等。

完整版资料我已经打包好,点击下方卡片即可免费领取!

【Stable Diffusion学习路线思维导图】

img

【Stable Diffusion安装包(含常用插件、模型)】

img

【AI绘画12000+提示词库】

img

【AI绘画800+骨骼姿势图】

img

【AI绘画视频合集】

img

这份完整版的stable diffusion资料我已经打包好,点击下方卡片即可免费领取!

在这里插入图片描述

### 如何在 Stable Diffusion使用上传蒙版 #### 准备工作 为了确保能够精确控制哪些部分需要被制,在准备阶段可以选择使用 Photoshop (PS) 或其他像编辑软件创建高精度的蒙版。因为直接在 Stable Diffusion 界面内通过鼠标涂鸦可能不够准确,而借助专业的形处理工具则能更好地定义想要修改的具体区域[^1]。 #### 创建并保存蒙版 当利用 PS 创作好所需的蒙版之后,需将其导出为 PNG 文件格式,并保持透明度信息不变。这是因为 SD 软件读取此类文件时依赖于 alpha 通道来判断哪些像素应该参后续的艺术创作过程。完成后的文件应原始待修饰片尺寸完全一致以便匹配对应关系正常运作。 #### 设置 Stable Diffusion 参数 进入 Stable Diffusion 用户界面后,找到用于指定输入像及其相应掩码的位置。通常情况下这会涉及到两个独立字段:一个是用来加载源素材的地方;另一个则是专门接收外部导入型遮罩数据的空间。按照指示分别上传之前准备好的底片以及对应的PNG格式蒙板文档[^2]。 #### 执行操作 确认所有必要的配置项均已正确设定完毕以后,就可以点击执行按钮启动算法流程了。此时系统将会基于给定条件自动成新的视觉效果版本出来。对于希望一次性处理多张相似类型的素材而言,则可考虑启用批量化作业功能简化复劳动强度。 ```python # 假设有一个简单的Python脚本调用StableDiffusion API来进行单张片的局部 import requests def redraw_image(image_path, mask_path): url = "http://localhost:7860/sdapi/v1/img2img" payload = { 'init_images': [open(image_path,'rb').read()], 'mask': open(mask_path,'rb'), 'include_init_images': True, 'resize_mode': 0, 'denoising_strength': 0.75, 'image_cfg_scale': 1.5, 'seed': -1, 'subseed': -1, 'batch_size': 1, 'n_iter': 1, 'steps': 50, 'cfg_scale': 7, 'width': 512, 'height': 512, 'restore_faces': False, 'tiling': False, 'negative_prompt': '', 'eta': 0, 's_churn': 0, 's_tmax': None, 's_tmin': 0, 's_noise': 1, 'override_settings_restore_afterwards': True } response = requests.post(url,json=payload) r_json = response.json() image_data = r_json['images'][0].split(",")[1] with open('output.png', 'wb') as f: f.write(base64.b64decode(image_data)) redraw_image('input.jpg','mask.png') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值