machine learning 第九周 推荐系统 Collaborative filtering

这一节仿佛没什么可说的~~

  • notation很重要

  • 主要矛盾

这个算法的主要矛盾就是得到x(i),即电影的feature;以及theta(j),用户的属性,两者乘可以得到某用户对某电影的评分。成本函数和算法的具体内容如下:

  • 实际应用中的问题

如果有新用户,什么都没打分,如何推荐电影呢?就用均值推荐,大众口味。算均值,具体操作如下:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值