前面有讲过线性回归,但是很多非线性问题不能用简单的线性回归来分类。这时需要用到逻辑回归,逻辑回归是一种非线性的回归。说到逻辑回归一定要说到概率问题,概率(probability)就是对一件事发生的可能性的衡量。一个事件的概率 0≤P≤1 , 当事件必然发生时概率为1, 当事件为不可能事件时概率为0. 条件概率的表达式为: P(A∣B)=P(A⋂B)P(B) ,表达式的意思在条件B下,条件A发生的可能性。 
 逻辑回归的基本模型为: 
 
 
  Z=θ0x0+θ1x1+θ2x2+...+θnxn  
 
 
用向量的形式可表示为:
 
  Z=ΘTX  
 
 
为了出来二值数据,需要引入sigmoid函数时曲线平滑化:
 
  g(Z)=11+e−z  
 
 
图像如下:
从图像中可以看出这个函数的性质:当Z=0时,g(Z)=1; 当Z趋近于正无穷时,g(Z)趋近于1;当Z趋近于负无穷时,g(Z)趋近于0.
将逻辑回归基本模型的向量表示形式带入到sigmoid函数中,可以得到预测函数:
 
  hθ(X)=g(ΘTX)=11+e−ΘTX  
 
 
用概率来表示
(y=1):
 
  hθ(X)=P(y=1∣X;Θ)  
 
 
(y=0):
 
  1−hθ(X)=P(y=0∣X;Θ)  
 
 
模型参数的选取需要使用代价函数(cost function),在线性回归中我们使用sum of squares的方法来描述误差,表达式为:

 
                   
                   
                   
                   逻辑回归是一种非线性回归方法,适用于解决分类问题。本文介绍了逻辑回归的基础,包括概率概念、基本模型。同时,讨论了与回归分析相关的皮尔逊相关系数及其取值范围,以及决定系数(R平方值)的概念,它表示自变量对因变量变异的解释比例。此外,还提到了R平方的局限性和修正方法。
逻辑回归是一种非线性回归方法,适用于解决分类问题。本文介绍了逻辑回归的基础,包括概率概念、基本模型。同时,讨论了与回归分析相关的皮尔逊相关系数及其取值范围,以及决定系数(R平方值)的概念,它表示自变量对因变量变异的解释比例。此外,还提到了R平方的局限性和修正方法。
           最低0.47元/天 解锁文章
最低0.47元/天 解锁文章
                           
                       
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   4万+
					4万+
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            