多层感知机(MLP)笔记

多层感知机(Multilayer Perceptron,简称MLP)是一种典型的前馈神经网络。它由多个层次的节点(也称为神经元)组成,其中每一层的节点与下一层的节点全连接。MLP通常包含一个输入层、一个或多个隐藏层以及一个输出层。每个节点使用一个激活函数来处理输入,并输出到下一层。

多层感知机的基本组成部分

  1. 输入层(Input Layer):接收输入数据的特征值。
  2. 隐藏层(Hidden Layers):执行中间计算,通常使用非线性激活函数(如ReLU、Sigmoid、Tanh等)。隐藏层的数量和每层的节点数量可以根据具体问题调整。
  3. 输出层(Output Layer):生成最终输出,激活函数的选择取决于具体任务(如分类、回归等)。

工作原理

每个节点接收来自前一层所有节点的加权和,并通过激活函数处理输出。公式如下:

y = f(W \cdot x + b)

其中:

  • x 是输入向量。
  • W是权重矩阵。
  • b是偏置向量。
  • f是激活函数(如ReLU、Sigmoid等)。
  • y是输出向量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值