多层感知机(Multilayer Perceptron,简称MLP)是一种典型的前馈神经网络。它由多个层次的节点(也称为神经元)组成,其中每一层的节点与下一层的节点全连接。MLP通常包含一个输入层、一个或多个隐藏层以及一个输出层。每个节点使用一个激活函数来处理输入,并输出到下一层。
多层感知机的基本组成部分
- 输入层(Input Layer):接收输入数据的特征值。
- 隐藏层(Hidden Layers):执行中间计算,通常使用非线性激活函数(如ReLU、Sigmoid、Tanh等)。隐藏层的数量和每层的节点数量可以根据具体问题调整。
- 输出层(Output Layer):生成最终输出,激活函数的选择取决于具体任务(如分类、回归等)。
工作原理
每个节点接收来自前一层所有节点的加权和,并通过激活函数处理输出。公式如下:
其中:
- 是输入向量。
- 是权重矩阵。
- 是偏置向量。
- 是激活函数(如ReLU、Sigmoid等)。
- 是输出向量。