多层感知机:Multi-Layer Perceptron

多层感知机:MLP

多层感知机由感知机推广而来,最主要的特点是有多个神经元层,因此也叫深度神经网络(DNN: Deep Neural Networks)。

感知机:PLA

多层感知机是由感知机推广而来,感知机学习算法(PLA: Perceptron Learning Algorithm)用神经元的结构进行描述的话就是一个单独的。

感知机的神经网络表示如下:

u=i=1nwixi+by=sign(u)={+1,u>01,u0

从上述内容更可以看出,PLA是一个线性的二分类器,但不能对非线性的数据并不能进行有效的分类。因此便有了对网络层次的加深,理论上,多层网络可以模拟任何复杂的函数。


多层感知机:MLP

多层感知机的一个重要特点就是多层,我们将第一层称之为输入层,最后一层称之有输出层,中间的层称之为隐层。MLP并没有规定隐层的数量,因此可以根据各自的需求选择合适的隐层层数。且对于输出层神经元的个数也没有限制。
MLP神经网络结构模型如下,本文中只涉及了一个隐层,输入只有三个变量 [x1,x2,x3] 和一个偏置量 b ,输出层有三个神经元。相比于感知机算法中的神经元模型对其进行了集成。


前向传播

前向传播指的是信息从第一层逐渐地向高层进行传递的过程。以下图为例来进行前向传播的过程的分析。
假设第一层为输入层,输入的信息为[x1,x2,x3]。对于层 l ,用Ll表示该层的所有神经元,其输出为 yl ,其中第 j 个节点的输出为y(j)l,该节点的输入为 u(j)l ,连接第 l 层与(l1)层的权重矩阵为 Wl ,上一层(第 l1 层)的第 i 个节点到第l层第 j 个节点的权重为w(ji)l

结合之前定义的字母标记,对于第二层的三个神经元的输出则有:

y(1)2=f(u(1)2)=f(i=1nw1i2xi+b(1)2)=f(w(11)2x1+w(12)2x2+w(13)2x3+b(1)2)y(2)2=f(u(2)2)=f(i=1nw2i2xi+b(2)2)=f(w(21)2x1+w(22)2x2+w(23)2x3+b(2)2)y(3)2=f(u(3)2)=f(i=1nw3i2xi+b(3)2)=f(w(31)2x1+w(32)2x2+w(33)2x3+b(3)2)

将上述的式子转换为矩阵表达式:
y2=y(1)2y(2)2y(3)2=fw112w212w312w122w222w322w132w232w332x1x2x3+b(1)2b(2)2b(3)2=f(W2X+b2)

将第二层的前向传播计算过程推广到网络中的任意一层,则:
y(j)l=f(u(j)l)u(j)l=iLl1w(ji)ly(i)l1+b(j)lyl=f(ul)=f(Wlyl1+bl)
其中 f() 为激活函数, b(j)l 为第 l 层第j个节点的偏置。


反向传播

基本的模型搭建完成后的,训练的时候所做的就是完成模型参数的更新。由于存在多层的网络结构,因此无法直接对中间的隐层利用损失来进行参数更新,但可以利用损失从顶层到底层的反向传播来进行参数的估计。(约定:小写字母—标量,加粗小写字母—向量,大写字母—矩阵)

假设多层感知机用于分类,在输出层有多个神经元,每个神经元对应一个标签。输入样本为 x=[x1,x2,,xn] ,其标签为 t ;
对于层 l ,用Ll表示该层的所有神经元,其输出为 yl ,其中第 j 个节点的输出为y(j)l,该节点的输入为 u(j)l ,连接第 l 层与(l1)层的权重矩阵为 Wl ,上一层(第 l1 层)的第 i 个节点到第l层第 j 个节点的权重为w(ji)l

对于网络的最后一层第 k 层——输出层,现在定义损失函数:

E=12jLk(t(j)y(j)k)2

为了极小化损失函数,通过梯度下降来进行推导:

Ew(ji)lEb(j)l=Ey(j)ly(j)lw(ji)l=Ey(j)ly(j)lu(j)lu(j)lw(ji)l=Ey(j)ly(j)lb(j)l=Ey(j)ly(j)lu(j)lu(j)lb(j)l

在上式子中,根据之前的定义,很容易得到:

y(j)lu(j)lu(j)lw(ji)lu(j)lb(j)l=f(u(j)l)=y(i)l1=1

那么则有:
Ew(ji)lEb(j)l=Ey(j)ly(j)lu(j)lu(j)lw(ji)l=Ey(j)lf(u(j)l)y(i)l1=Ey(j)ly(j)lu(j)lu(j)lb(j)l=Ey(j)lf(u(j)l)

另有,下一层所有结点的输入都与前一层的每个结点输出有关,因此损失函数可以认为是下一层的每个神经元结点输入的函数。那么:
Ey(j)l=E(u(1)l+1,u(2)l+1,...,u(k)l+1,...,u(K)l+1)y(j)l=kLl+1Eu(k)l+1u(k)l+1y(j)l=kLl+1Ey(k)l+1y(k)l+1u(k)l+1u(k)l+1y(j)l=kLl+1Ey(k)l+1y(k)l+1u(k)l+1w(kj)l+1

此处定义节点的灵敏度为误差对输入的变化率,即:
δ=Eu

那么第 l 层第j个节点的灵敏度为:
δ(j)l=Eu(j)l=Ey(j)ly(j)lu(j)l=Ey(j)lf(u(j)l)

结合灵敏度的定义,则有:
Ey(j)l=kLl+1Ey(k)l+1y(k)l+1u(k)l+1w(kj)l+1=kLl+1δkl+1w(kj)l+1

上式两边同时乘上 f(u(j)l) ,则有
δ(j)l=Ey(j)lf(u(j)l)=f(u(j)l)kLl+1δkl+1w(kj)l+1

注意到上式中表达的是前后两层的灵敏度关系,而对于最后一层,也就是输出层来说,并不存在后续的一层,因此并不满足上式。但输出层的输出是直接和误差联系的,因此可以用损失函数的定义来直接求取偏导数。那么:
δ(j)l=Ey(j)lf(u(j)l)=f(u(j)l)kLl+1δkl+1w(kj)l+1lf(u(j)l)(y(j)lt(j))l

至此,损失函数对各参数的梯度为:

Ew(ji)lEb(j)l=Eu(j)lu(j)lw(ji)l=δ(j)ly(i)l1=Eu(j)lu(j)lb(j)l=δ(j)l

上述的推到都是建立在单个节点的基础上,对于各层所有节点,采用矩阵的方式表示,则上述公式可以写成:
EWlEblδl=δlyTl1=δl={(WTl+1δl+1)f(ul),l(ylt)f(ul),l

其中运算符 表示矩阵或者向量中的对应元素相乘。
常见的几个激活函数的导数为:
f(ul)f(ul)f(ul)=sigmoid(ul)=sigmoid(ul)(1sigmoid(ul))=yl(1yl)=tanh(ul)=1tanh2(ul)=1y2l=softmax(ul)=softmax(ul)softmax2(ul)=yly2l

根据上述公式,可以得到各层参数的更新公式为:

Wlbl:=WlηEWl=WlηδlyTl1:=blηEb=blηδl


References:

### 回答1: 这是一个关于ROS Noetic软件包依赖关系的问题。其中,下列软件包的依赖关系尚不足够满足要求,无法安装: ros-noetic-desktop-full: 依赖于 ros-noetic-desktop,但它不会被安装。 依赖于 ros-noetic-perception,但它不会被安装。 依赖于 ros-noetic-simulators,但它不会被安装。 依赖于 ros-noetic-urdf-sim-tu,但它不会被安装。 ### 回答2: 这个错误提示是说明在安装 ros-noetic-desktop-full 软件包时,发现它需要依赖一些其他的软件包,但是这些软件包未被安装。其中,ros-noetic-desktop、ros-noetic-perception、ros-noetic-simulators 和 ros-noetic-urdf-sim-tu 是四个未满足依赖关系的软件包。 这个错误提示一般是由于软件源的问题所导致的。在安装软件包时,系统会从软件源中查找该软件包以及它所需的依赖关系。如果软件源中不存在某个软件包的依赖关系,则会提示这个错误信息。 要解决这个问题,可以尝试以下几个方法: 1. 更新软件源:可通过修改软件源配置文件或使用软件源管理工具来更新软件源。更新后再次尝试安装软件包,看是否能够解决依赖关系问题。 2. 手动安装依赖关系:如果更新软件源后仍然无法解决依赖关系问题,可以尝试手动安装依赖关系。按照依赖关系的提示,逐个安装这四个软件包。安装完成后再次尝试安装 ros-noetic-desktop-full 软件包,看是否能够正常安装。 3. 使用 aptitude 命令安装:aptitude 命令可以自动处理依赖关系,可能会更好地解决这个问题。可以通过运行以下命令安装 ros-noetic-desktop-full 软件包: sudo aptitude install ros-noetic-desktop-full 以上是我的回答,希望能对你有所帮助。如果你还有其他问题,请随时回复。 ### 回答3: 这个问题意味着在安装 ros-noetic-desktop-full 软件包时,计算机无法满足所有需要的依赖关系。这些依赖关系包括 ros-noetic-desktop、ros-noetic-perception、ros-noetic-simulators 和 ros-noetic-urdf-sim-tu。 在解决这个问题之前,我们需要了解什么是依赖关系。在软件工程中,依赖关系指的是一个软件包需要另一个软件包才能正常运行的情况。例如,在 ROS 中,ros-noetic-desktop-full 需要依赖其他的软件包才能提供完整的功能。 为了解决这个问题,我们可以使用以下方法: 1. 更新软件包源列表。我们可以更新软件包源列表,这有助于计算机查找所需的软件包。在 Ubuntu 系统中,我们可以使用以下命令更新软件包源列表:sudo apt-get update。 2. 安装依赖关系。我们可以尝试单独安装缺失的依赖关系。在 ROS 中,我们可以使用以下命令安装缺失的软件包:sudo apt-get install ros-noetic-desktop ros-noetic-perception ros-noetic-simulators ros-noetic-urdf-sim-tu。 3. 检查软件包仓库。某些情况下,软件包源可能已经过时或不再受支持。我们可以检查软件包仓库,查看软件包是否可用。在 Ubuntu 系统中,我们可以使用以下命令查看软件包仓库:apt-cache search ros-noetic-desktop-full。 总之,无法满足依赖关系的问题是常见的,在解决这个问题之前,我们需要了解依赖关系的概念,并掌握一些解决方法。在 ROS 中,我们可以使用更新软件包源列表、安装依赖关系和检查软件包仓库等方法解决问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值