LeetCode每日一题学习 2024.01.11

文章讨论了如何使用动态规划解决一个关于构造有效字符串的问题,即给定一个输入字符串word,计算最少需要插入多少次a、b或c使其成为由abc组成的序列。通过定义状态转移方程并应用动归方法,找到最小插入次数。
摘要由CSDN通过智能技术生成

2645. 构造有效字符串的最少插入数

描述:

给你一个字符串 word ,你可以向其中任何位置插入 "a"、"b" 或 "c" 任意次,返回使 word 有效 需要插入的最少字母数。
如果字符串可以由 "abc" 串联多次得到,则认为该字符串 有效 。

样例1:
输入:word = "b"
输出:2
解释:在 "b" 之前插入 "a" ,在 "b" 之后插入 "c" 可以得到有效字符串 "abc" 。

 样例2:

输入:word = "aaa"
输出:6
解释:在每个 "a" 之后依次插入 "b" 和 "c" 可以得到有效字符串 "abcabcabc" 

 思路:

尝试代码随想录思路,动归五部曲:

(1)定义。dp[i]为将前i-1个字符拼凑成若干个"abc"所需要的最小插入数;
(2)初始化。dp[0]=0;
(3)动归执行体。对于其中位置dp[i]来说:dp[i]=dp[i-1]+2;或者dp[i]=dp[i-1]-1;前者是指,当前值单独保存在一串“abc”里,与前一个属于不同串;后者是指当前元素比前一个元素ASCII值大,说明两个元素可以作为同一串出现。
此外,因为要取得最小值,因此需要取其中的最小值。
(4)递归次序就是从1到n(n为单词的长度),从前往后;因为是先知道最开始的地方的定义。
(5)编写代码,跳出的条件是遍历结束。

class Solution {
public:
    int addMinimum(string word) {
        int n = word.size();//获取单词长度
        vector<int> dp(n + 1);//初始化dp向量
        for (int i = 1; i <= n; i++) {
            dp[i] = dp[i - 1] + 2;
            if (i > 1 && word[i - 1] > word[i - 2]) {
                dp[i] = dp[i - 1] - 1;
            }
        }
        return dp[n];
    }
};

总结: 

熟悉动归的步骤,识别动归,完成动归,找出关键步骤,AC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值