描述:
给你一个字符串 word
,你可以向其中任何位置插入 "a"、"b" 或 "c" 任意次,返回使 word
有效 需要插入的最少字母数。
如果字符串可以由 "abc" 串联多次得到,则认为该字符串 有效 。
样例1: 输入:word = "b" 输出:2 解释:在 "b" 之前插入 "a" ,在 "b" 之后插入 "c" 可以得到有效字符串 "abc" 。
样例2:
输入:word = "aaa" 输出:6 解释:在每个 "a" 之后依次插入 "b" 和 "c" 可以得到有效字符串 "abcabcabc"
思路:
尝试代码随想录思路,动归五部曲:
(1)定义。dp[i]为将前i-1个字符拼凑成若干个"abc"所需要的最小插入数;
(2)初始化。dp[0]=0;
(3)动归执行体。对于其中位置dp[i]来说:dp[i]=dp[i-1]+2;或者dp[i]=dp[i-1]-1;前者是指,当前值单独保存在一串“abc”里,与前一个属于不同串;后者是指当前元素比前一个元素ASCII值大,说明两个元素可以作为同一串出现。
此外,因为要取得最小值,因此需要取其中的最小值。
(4)递归次序就是从1到n(n为单词的长度),从前往后;因为是先知道最开始的地方的定义。
(5)编写代码,跳出的条件是遍历结束。
class Solution {
public:
int addMinimum(string word) {
int n = word.size();//获取单词长度
vector<int> dp(n + 1);//初始化dp向量
for (int i = 1; i <= n; i++) {
dp[i] = dp[i - 1] + 2;
if (i > 1 && word[i - 1] > word[i - 2]) {
dp[i] = dp[i - 1] - 1;
}
}
return dp[n];
}
};
总结:
熟悉动归的步骤,识别动归,完成动归,找出关键步骤,AC