NYOJ115 城市平乱

5 篇文章 0 订阅

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=115

题目分析:这肯定是一条求最短路的题,最开始的想法是用floyd算法来做,结果悲剧的TLE。

int Map[1001][1001];
int dp[1001][1001];
int a[100];
int main()
{
	int t,i,j,k;
	int n,m,p,q;
	int s, e, w;
	scanf("%d", &t);
	while(t--)
	{
		scanf("%d %d %d %d", &n, &m, &p, &q);
		for(i = 0; i < n; ++i)
			scanf("%d", &a[i]);

		for(i = 1; i <= m; ++i)
			for(j = 1; j <= m; ++j)
				Map[i][j] = 1e7;

		for(i = 0; i < p; ++i)
		{
			scanf("%d %d %d", &s, &e, &w);
			Map[s][e] = w;
			Map[e][s] = w;
		}
		memcpy(dp, Map, sizeof(Map));

		for(k = 1; k <= m; ++k)
			for(i = 1; i <= m; ++i)
				for(j = 1; j <= m; ++j)
					dp[i][j] = dp[i][j] < dp[i][k] + dp[k][j] ? dp[i][j] : dp[i][k] + dp[k][j];

		s = 1e7;
		for(i = 0; i < n; ++i)
			s = s < dp[a[i]][q] ? s : dp[a[i]][q];
		printf("%d\n", s);
	}
	return 0;
}
没办法然后想着用广搜来做,居然过了,哎呀,伤心得很啊~
#include<stdio.h>
#include<string.h>

struct EDGE
{
	int to;
	int w;
};
EDGE edge[1001][1001];//edge[i][0].to存放的是节点i可达的节点数
int dp[1001];
int a[100];
int Queue[2001];
bool used[1001];

int BFS(int n, int q)
{
	int head, tail,i;
	int temp,j;
	int ans = 1e7;
	for(i = 0; i < n; ++i)//对军队所在的每一个城市进行广搜
	{
		memset(used, 0, sizeof(used));
		Queue[0] = a[i];
		used[a[i]] = true;
		dp[a[i]] = 0;
		head = 0;
		tail = 0;
		while(head <= tail)
		{
			temp = Queue[head];
			if(temp == q)//遍历到终点,跳出循环
			{
				ans = ans < dp[temp] ? ans : dp[temp];
				break;
			}			
			for(j = 1; j <= edge[temp][0].to; ++j)
			{
				//该节点没有用过,或者用过,但有更优的路径
				if(!used[edge[temp][j].to] || dp[edge[temp][j].to] > dp[temp] + edge[temp][j].w)
				{
					used[edge[temp][j].to] = true;
					Queue[++tail] = edge[temp][j].to;
					dp[edge[temp][j].to] = dp[temp] + edge[temp][j].w;
				}
			}//end for j
			++head;
		}//end for while
	}//end for i
	return ans;
}

int main()
{
	int t,i;
	int n,m,p,q;
	int s, e, w;
	scanf("%d", &t);
	while(t--)
	{
		scanf("%d %d %d %d", &n, &m, &p, &q);
		for(i = 0; i < n; ++i)
			scanf("%d", &a[i]);

		for(i = 1; i <= m; ++i)
			edge[i][0].to = 0;

		for(i = 0; i < p; ++i)
		{
			scanf("%d %d %d", &s, &e, &w);
			++edge[s][0].to;
			edge[s][edge[s][0].to].to = e;
			edge[s][edge[s][0].to].w = w;
			++edge[e][0].to;
			edge[e][edge[e][0].to].to = s;
			edge[e][edge[e][0].to].w = w;
		}

		s = BFS(n, q);
		printf("%d\n", s);
	}
	return 0;
}

反向广搜为什么就不对了呢?今天骑自行车的时候忽然想到,这样反向广搜是不对的,因为对每个节点如果有改进的话是会重复被压入队列的。所以有可能终点也在改进的过程中被反复的压入队列了,然后出队列的时候呢,可能就是同一个终点出来多次,导致有些终点的结果根本就没有遍历到。一个解决办法是把出队列的终点做上标记。如果后面同一个点出队列的时候,就不用++count了,那在进队列判断的时候也需要做相应的改正。

#include<stdio.h>
#include<string.h>

struct EDGE
{
	int to;
	int w;
};
EDGE edge[1001][1001];
int dp[1001];
int a[100];
int Queue[2001];
//终点标记为-1,其余点未访问标记为0,访问过标记为1;
int used[1001];

int BFS(int n, int q)
{
	int head, tail;
	int temp,j;
	int ans = 1e7;
	int count = 0;

	Queue[0] = q;
	used[q] = 1;
	dp[q] = 0;
	head = 0;
	tail = 0;
	while(head <= tail)
	{
		temp = Queue[head];
		if(used[temp] == -1)//遍历到终点,跳出循环
		{
			ans = ans < dp[temp] ? ans : dp[temp];
			++count;//问题主要是在这里,不是每次终点出队列的时候都要++count
			if(count == n)
				break;
		}
			
		for(j = 1; j <= edge[temp][0].to; ++j)
		{
			//该节点没有用过,或者用过,但有更优的路径
			if(used[edge[temp][j].to] <= 0 || dp[edge[temp][j].to] > dp[temp] + edge[temp][j].w)
			{
				used[edge[temp][j].to] = !used[edge[temp][j].to] ? 1 : used[edge[temp][j].to];
				Queue[++tail] = edge[temp][j].to;
				dp[edge[temp][j].to] = dp[temp] + edge[temp][j].w;
			}
		}//end for j
		++head;
	}//end for while
	return ans;
}

int main()
{
	int t,i;
	int n,m,p,q;
	int s, e, w;
	scanf("%d", &t);
	while(t--)
	{
		memset(used, 0, sizeof(used));
		scanf("%d %d %d %d", &n, &m, &p, &q);
		for(i = 0; i < n; ++i)
		{
			scanf("%d", &a[i]);
			used[a[i]] = -1;
		}

		for(i = 1; i <= m; ++i)
			edge[i][0].to = 0;

		for(i = 0; i < p; ++i)
		{
			scanf("%d %d %d", &s, &e, &w);
			++edge[s][0].to;
			edge[s][edge[s][0].to].to = e;
			edge[s][edge[s][0].to].w = w;
			++edge[e][0].to;
			edge[e][edge[e][0].to].to = s;
			edge[e][edge[e][0].to].w = w;
		}

		s = BFS(n, q);
		printf("%d\n", s);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值