NYOJ115城市平乱_单源点最短路径(spfa)

题目链接

第一次敲的时候我用的是vector,看题的时候心里还在想着要判重边,把代码都敲完后发现了问题,用vector没办法判断重边啊~又把数据结构赶紧改成了邻接矩阵,同时也发现了自己容易犯的错误!学了新东西就只用新的,不善于思考两者的优劣势,(工欲善其事必先利其器)这句话自己没做到!!真是大忌啊!!!

还有一点就是今天学会了怎么去计算是否超内存了!这一点对于我做题时候选择数据结构时非常有用

#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
#define inf 0x3f3f3f
#define min(a,b) a<b?a:b 

int map[1005][1005];
int dis[1005];
int vis[1005];
int spfa(int s,int q,int n)
{
	memset(dis,0x3f,sizeof(dis));
	memset(vis,0,sizeof(vis));
	int v,i,w,u;
	
	queue<int>Q;
	Q.push(s);
	vis[s]=1;
    dis[s]=0;
	
	while(!Q.empty())
  {
  	u=Q.front();
  	Q.pop();
     
	for(v=1;v<=n;v++)
	{
		if(map[u][v]<inf)
		{
			if(dis[v] > dis[u]+map[u][v])
		   {
			dis[v]=dis[u]+map[u][v];
			if(!vis[v])
			{
				vis[v]=1;
				Q.push(v);
			}
		 }
		}
		
	} 
  }
  return dis[q];
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		int n,m,p,q,i;
		int army[105];
		memset(army,0,sizeof(army));
		memset(map,0x3f,sizeof(map));
		scanf("%d%d%d%d",&n,&m,&p,&q);
		for(i=1;i<=m;i++)
		  map[i][i]=0;
		for(i=1;i<=n;i++)
		{
			scanf("%d",&army[i]);
		} 
		for(i=0;i<p;i++)
		{
			int u,v,w;
			scanf("%d%d%d",&u,&v,&w);//需要判重边 
			map[u][v]=map[v][u]=min(map[u][v],w);
			
		}
		
		int min=1<<28;
		for(i=1;i<=n;i++)
		{
			int res=spfa(army[i],q,m);
			if(min>res)
			{
				min=res;
			}
		}
		printf("%d\n",min);
		
	}
	return 0;
}


x1y2 x2y3 x3y1-x1y3-x2y1-x3y2 是计算三角形面积的公式中的一部分。 在这个公式中,x1、x2、x3分别表示三角形的三个顶点的x坐标,y1、y2、y3分别表示三角形的三个顶点的y坐标。通过计算这个表达式的值,可以得到三角形的面积。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [TetraCluster:使用并行Java 2库的Java并行程序。 该程序在群集并行计算机上运行,​​以从给定的点集中找到...](https://download.csdn.net/download/weixin_42171208/18283141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [线性代数有个题,求正交变换x=Qy,化二次型f(x1,x2,x3)=8x1x2+8x1x3+8x2x3为标准型求出特征值](https://blog.csdn.net/weixin_39956182/article/details/115882118)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [nyoj-67-三角形面积(S=(1/2)*(x1y2+x2y3+x3y1-x1y3-x2y1-x3y2))](https://blog.csdn.net/weixin_30492601/article/details/99541033)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值