POJ 3159 good luck to me

临行前最后一题,居然还不给我1A。

题意,给出一堆B-A<=C,问1和N这两人的最大差值。

直接差分约束求最短路,即最大值即可。

初值将1设为0,那么最大差值就是dis[n],AC。

但是这道题居然卡SPFA,太神奇了。

然后要DIJ+HEAP才可以。

看了DISCUSS说,SPFA把队列改成栈就能过,真是神奇。

#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Max 2505
#define FI first
#define SE second
#define ll long long
#define PI acos(-1.0)
#define inf 0x3fffffff
#define LL(x) ( x << 1 )
#define bug puts("here")
#define PII pair<int,int>
#define RR(x) ( x << 1 | 1 )
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )

using namespace std;

#define M 999999
#define N 111111
int n , m ;
struct kdq {
    int e , l , next ;
} ed[M] ;
int head[N] , num ;
void init() {
    mem(head ,-1) ;
    num = 0 ;
}
void add(int s ,int e ,int l) {
    ed[num].e = e ;
    ed[num].l = l ;
    ed[num].next = head[s] ;
    head[s] = num ++ ;
}
int dis[N] , cnt[N] ;
bool vis[N] ;
queue<int>qe ;
int spfa() {
    while(!qe.empty())qe.pop() ;
    for (int i = 0 ; i <= n ; i ++ )dis[i] = inf ,cnt[i] = 0 ;
    dis[1] = 0 ;
    mem(vis ,0) ;
    qe.push(1) ;
    vis[1] = 1 ;
    while(!qe.empty()) {
        int tp = qe.front() ;
        qe.pop() ;
        vis[tp] = 0 ;
        if(cnt[tp] > n)return -1 ;
        for (int i = head[tp] ; ~i ; i = ed[i].next ) {
            int e = ed[i].e ;
            int l = ed[i].l ;
            if(dis[e] > dis[tp] + l) {
                dis[e] = dis[tp] + l ;
                if(!vis[e]) {
                    vis[e] = 1 ;
                    qe.push(e) ;
                    cnt[e] ++ ;
                }
            }
        }
    }
    return dis[n] - dis[1] ;
}

struct DIJ {
    int e , l ;
    DIJ() {}
    DIJ(int ee , int lx):e(ee) , l(lx) {}
    bool operator < (const DIJ &fk )const {
        return l > fk.l ;
    }
} ;
//queue<DIJ>q ;
int dij() {
    priority_queue<DIJ>q ;
    for (int i = 1 ; i <= n ; i ++ )dis[i] = inf ;
    mem(vis ,0) ;
    dis[1] = 0 ;
    q.push((DIJ) {
        1 , 0
    }) ;
    while(!q.empty()) {
        DIJ tp = q.top() ;
        q.pop() ;
        if(vis[tp.e])continue ;
        vis[tp.e] = 1 ;
        for (int i = head[tp.e] ; ~i ; i = ed[i].next ) {
            int e = ed[i].e ;
            int l = ed[i].l ;
            if(dis[e] > dis[tp.e] + l ) {
                dis[e] = dis[tp.e] + l ;
                q.push(DIJ(e , dis[e])) ;
            }
        }
    }
    return dis[n] ;
}
int main() {
    while(cin >> n >> m ) {
        int a , b , c ;
        init() ;
        for (int i = 0 ; i < m ; i ++ ) {
            scanf("%d%d%d",&a,&b,&c) ;
            add(a , b , c) ;
        }
        printf("%d\n",dij()) ;
    }
    return 0 ;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值