临行前最后一题,居然还不给我1A。
题意,给出一堆B-A<=C,问1和N这两人的最大差值。
直接差分约束求最短路,即最大值即可。
初值将1设为0,那么最大差值就是dis[n],AC。
但是这道题居然卡SPFA,太神奇了。
然后要DIJ+HEAP才可以。
看了DISCUSS说,SPFA把队列改成栈就能过,真是神奇。
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Max 2505
#define FI first
#define SE second
#define ll long long
#define PI acos(-1.0)
#define inf 0x3fffffff
#define LL(x) ( x << 1 )
#define bug puts("here")
#define PII pair<int,int>
#define RR(x) ( x << 1 | 1 )
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
using namespace std;
#define M 999999
#define N 111111
int n , m ;
struct kdq {
int e , l , next ;
} ed[M] ;
int head[N] , num ;
void init() {
mem(head ,-1) ;
num = 0 ;
}
void add(int s ,int e ,int l) {
ed[num].e = e ;
ed[num].l = l ;
ed[num].next = head[s] ;
head[s] = num ++ ;
}
int dis[N] , cnt[N] ;
bool vis[N] ;
queue<int>qe ;
int spfa() {
while(!qe.empty())qe.pop() ;
for (int i = 0 ; i <= n ; i ++ )dis[i] = inf ,cnt[i] = 0 ;
dis[1] = 0 ;
mem(vis ,0) ;
qe.push(1) ;
vis[1] = 1 ;
while(!qe.empty()) {
int tp = qe.front() ;
qe.pop() ;
vis[tp] = 0 ;
if(cnt[tp] > n)return -1 ;
for (int i = head[tp] ; ~i ; i = ed[i].next ) {
int e = ed[i].e ;
int l = ed[i].l ;
if(dis[e] > dis[tp] + l) {
dis[e] = dis[tp] + l ;
if(!vis[e]) {
vis[e] = 1 ;
qe.push(e) ;
cnt[e] ++ ;
}
}
}
}
return dis[n] - dis[1] ;
}
struct DIJ {
int e , l ;
DIJ() {}
DIJ(int ee , int lx):e(ee) , l(lx) {}
bool operator < (const DIJ &fk )const {
return l > fk.l ;
}
} ;
//queue<DIJ>q ;
int dij() {
priority_queue<DIJ>q ;
for (int i = 1 ; i <= n ; i ++ )dis[i] = inf ;
mem(vis ,0) ;
dis[1] = 0 ;
q.push((DIJ) {
1 , 0
}) ;
while(!q.empty()) {
DIJ tp = q.top() ;
q.pop() ;
if(vis[tp.e])continue ;
vis[tp.e] = 1 ;
for (int i = head[tp.e] ; ~i ; i = ed[i].next ) {
int e = ed[i].e ;
int l = ed[i].l ;
if(dis[e] > dis[tp.e] + l ) {
dis[e] = dis[tp.e] + l ;
q.push(DIJ(e , dis[e])) ;
}
}
}
return dis[n] ;
}
int main() {
while(cin >> n >> m ) {
int a , b , c ;
init() ;
for (int i = 0 ; i < m ; i ++ ) {
scanf("%d%d%d",&a,&b,&c) ;
add(a , b , c) ;
}
printf("%d\n",dij()) ;
}
return 0 ;
}