深度置信网络(DBM)

本文解析了深度信念网络(DBN)的构建原理,重点介绍了RBM(受限玻尔兹曼机)的结构、能量函数及训练过程,包括CD-k算法的应用。从初始化到堆叠训练,再到微调连接层,展示了DBN的完整流程和sklearn实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DBN由多层受限玻尔兹曼机(RBM)堆叠加输出层构成,RBM由隐层和显层构成,如下图所示

 

其中v为输入向量,h为隐层的节点。wij为vi到hj的权重,对于给定的状态(v,h),RBM的能量函数可表示为

其中ai为可见层的置偏值,bj为隐层的置偏值。

  可见层和隐层相互独立,h在v上的最大似然估计为

P(h|v)=\prod p(hi|v)    i=1,2.......n

通过v可计算出隐层神经元激活的概率为:

P(h1=1|v)=sigmoid(\sum_{i=1}^{i=n}wi1*vi+a)

通过p可计算出显层神经元激活的概率为:

P(v1=1|h)=sigmoid(\sum_{j=1}^{j=m}w1j*hj+b)

训练采用cd-k(对比散度算法)

假设初始为v,h,迭代一轮之后为v',h',学习率为lr,则w,a,b的更新规则如下:

w=w+lr*(v*[p(h=1|v)]t-v'*[p(h'=1|v')]t)   其中t表示转置

a=a+lr*(v-v')

b=b+lr*([p(h=1|v)]-[p(h'=1|v')])

初始化可将数据v归一化,[v-v(min)]/[v(max)-v(min)],w,a,b随机赋初值

整体的DBN如图:

先独立训练每一层的rbm,再把上一层的rbm的输出做为下一层rbm的输入,最后接上连接层,进行BP微调模型。

 

代码如下,采用sklearn中的rbm层实现

 

 

 

 

深度玻尔兹曼机(DBM)是由多个受限玻尔兹曼机(RBM)串联堆叠而形成的深层神经网络。与深度信念网络(DBN)相似,DBM的每两层之间都存在双向连接。它们是一种无向概率模型,用于学习和表示复杂的概率分布。DBM可以用于无标签数据的无监督学习任务,如特征提取、降维和生成模型等。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【总结】关于玻尔兹曼机(BM)、受限玻尔兹曼机(RBM)、深度玻尔兹曼机(DBM)深度置信网络(DBN)理论总结和...](https://blog.csdn.net/qq_43462005/article/details/108712717)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [29 深度玻尔兹曼机 Deep Boltzmann Machine](https://blog.csdn.net/cengjing12/article/details/106762858)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [深度学习:自编码器、深度信念网络和深度玻尔兹曼机](https://blog.csdn.net/zuzhiang/article/details/103114358)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值